combit”®

Programmer’s manual

1 List & Label® 31

The information in this document is subject to change without notice. Companies, names and data used in examples herein are fictitious unless
otherwise noted. The availability of functions described in this manual depends on the version, the release level, the installed service packs and
other features of your system (e.g. operating system, word processing software, email software etc.) as well as the general configuration. No part
of this document may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, without the express
written permission of combit GmbH.

The license agreement can be found at https://www.combit.com and in the installation directory.
JPEG coding and encoding is done with help of the JPEG Library of the IJG (Independent JPEG Group).
Avery and all Avery brands, product names and codes are trademarks of Avery Dennison Corporation.
PDF creation utilizes wPDF3 (c) wpCubed GmbH - www.pdfcontrol.com.

List & Label uses licensed technology from PDF Tools AG.

DataMatrix, MicroPDF417 and QRCode generation is done using components (c) J4L Components.
Aztec Barcode creation utilizes free code from Hand Held Inc.

Not all features are available in all editions. Please note the hints on LL_ERR_LICENSEVIOLATION.

Copyright © combit GmbH; Rev. 31.0
www.combit.com

All rights reserved.

https://www.combit.com/
http://www.pdfcontrol.com/
https://www.combit.com/

Contents

Contents
1. INErOAUCTION . L uutttiiiiiiiii ittt 8
1.1 Before Installationccveiiiiir i 8
1.1.1 System RequiremMentsooouieiiiiiiiii e 8
1.1.2 LICENSING ettt 8
1.2 AFter InStallationcoooiiiriiee e 8
1.2.1 STAMT IMBNU ..o 8
1.2.2 Designer Quick Start via Sample Applicationccccccoeviiiiienn. 8
1.2.3 Programming Samples ..o 9
1.2.4 DOoCUMENTATION L.iiiiiiiiiii e 9
JIRC I 10 g o o) g =To 14 670) aToT=Y o} TSSO 9
1.3.1 Basic PrinCiplesoooiii 9
1.3.2 ProjeCt TYPES ..o 10
1.3.3 Variables and Fieldscccccooiiiiiiiii 10
1.3.4 Available User Interface Languagescccccooeeeeiiiiiiiieeieeiii 11
1.4 Getting Started With Programmingccooeeioiiiiiiiiiiiie 11
1.4.1 OVEIVIBW ... 11
1.4.2 Integration With NET ... 11
1.4.3 Integration With Delphi.........ccoooooo 11
1.4.4 Integration With C++ Builder............ccccooiviiiii 11
145 Integration With C/C4 ... 11
1.4.6 Integration With Visual BasiC...........ccccoooooiiii 11
1.4.7 Integration With Javacccooooii 11
1.4.8 Integration With Other Programming Languages..............cc......... 12
1.4.9 Hints on Table, Variable and Field Namesc.ccccccciiiiiinn. 12
1.4.10 Debugging SUPPOI....ciii it 12
2. Programming With .NET..........cooiiiiiiii e, 13
2.1 INEFOAUCTION . ..etiieiiiii st 13
211 Integration in Visual StUdioooooiiiiii 13
2.1.2 COMPONENTS .ottt 13
2.2 FIrSt SEOPS s 14
221 Integrate List & Label ... 14
222 License COMPONENT......uuiiiiiiiiiiii e 15
223 Binding to @ Data SOUMCEcvviiiiiiiiiiecc e 15
2.2.4 DESIgN i 15
225 P INT eee 16
2.2.6 EXPOM . 16
227 Important Properties of the Component.............ccoeeiiiiieiiiinn .. 17
2.3 Other Important CONCEPTS -...uuuuuuureaaaarraree e 17
2.3.1 Data Providers......cooiiiiiiiiieii e 17
2.3.2 Variables, Fields and Data Typesccoooeviiiiiiiiiiiiieeceeeeee, 19
2.3.3 BV BNTS 21
2.3.4 ProjeCt TYPES .ooviiiiiiiii 21
2.3.5 Varying Printers and Printing COpiescccoovvvvieiiiiiiiiiiieee, 22
2.3.6 Edit and Extend the Designer........ccccccoiiiiiiiiiiiii 22
2.3.7 Objects in the DeSigNerccccoiiiiiiiiii e 23
2.3.8 Report CoNtaiNgr......ooiiiiii e 24
2.3.9 Object Model (DOM) ...ooiiiiiiiiiecee e 24
2.3.10 List & Label in WPF Applicationscccccooiiviiiiiiiiiiiee e 25
2.3.11 Error Handling With EXCEpPtioNS.......ccoviviiiiiiiiiie e 25
2.3.12 DEDUGGING i 25
2.3.13 Repository Mode for Distributed (Web) Applications................... 27
2.4 Usage in Web Applications..........coooiiiiiiiiiiiiiii i 28
2.5 EXAMPIES corneniieiiiieie e 28
251 SIMPlE Label oo 28
25.2 SIMPIE LISt i 28
253 INVOICE MEIQE ..o 29
254 Print Card With Simple Placeholders..............cccccoevviiieiiin 29
255 SUD REPOIMS e, 29
258 CNamS i 30
257 CroSS TAbIES ...ooiiiiiiiiiiiie e 30
2.5.8 Database Independent Contentscccccuvvveiieiiiiiiiiiicceeec e 30

259 EXPOM . 31

Contents

2.5.10 Extend Designer by Custom Functioncccccoeiiiiiiiiiii, 32
2.5.11 Join and Convert Preview Files.........cccccoiiiiiiiiiiiii 32
2512 Sending E-Mail. ..o 32
2.5.13 Store Project Files ina Database...............oooooeeiiii . 33
2514 Network Printingccoooiiiiic e 33

3. Programming With the VCL Componenteuvvvvviiiiiiniiniiiinininnn. 34
3.1 Integration of the Component...........ccccceeeeeiie 34
3.1.1 FireDAC ComMPONENTouiiiiiiiiiii e 34
3.1.2 BDE COMPONENT ..ot 34

3.2 Data BindiNg......ccuvveiiiiiiiiiiiieii i 35
3.2.1 Binding List & Label to a Data Source..........ccccoovvveiiiieeiiic, 3b
3.2.2 Working With Master Detail Recordscccccovviiiiiiiiniiii, 3b
3.2.3 Additional Options for Data Bindingccccoeviiiiiiiiiii, 35

3.3 Simple Print and Design Methods...........ccoooviiiiiiiii 36
3.3.1 Working PrinCiple..........ooiiiiiiie 36
3.3.2 Using the UserData Parameter............cccoovvviiiiiiiiiiiiiiicceeee e 37

3.4 Transferring Unbound Variables and Fieldsccccccc 37
3.4.1 PICTUTES 1t 37
3.4.2 BarCOUES ... it 37

3.5 Language Selection..........coooveiiiiiii i 37
3.6 Working With Events ... 38
3.7 Displayinga Preview Filecooooiiiiiii 38
3.8 Working With Preview Files ... 38
3.8.1 Opening a Preview Filecccooiiiiii 38
3.8.2 Merging Multiple Preview Filescccciiiiiiii 38
3.8.3 DEDUGGING -ttt 38

3.9 Extending the DeSignercci it 38
3.9.1 Using the Formula Wizard to Add Your Own Functions............... 39
3.9.2 Adding Your Own Objects to the Designercccccooovveviinnnnn. 40

4. Programming With the OCX Component..........cccuvvvviiviiiiniiniininniininn. 41
4.1 Integration of the Component............cccceeeeeeiii 41
4.2 Simple Print and Design Methods............ccccceeiiiiiii 41
4.2.1 Working PrinCipleo 41
4.2.2 Using the UserData Parametercocoveviiiiiiiiiii 42

4.3 Transferring Unbound Variables and Fieldsccccccc 42
4.3.1 PICTUTES Lo 42
4.3.2 BarCOAES .. i 42

4.4 Language SeleCtion.........ccooviieiei i 42
4.5 Working With Events ... 42
4.6 Displayinga Preview Filecoooooiiiiiii 42
4.7 Working With Preview Files ..o 43
4.7.1 Opening a Preview Filecccociiii 43
4.7.2 Merging Multiple Preview Files ... 43
4.7.3 DebUGOING coiiiiiiiii 43

4.8 Extending the DeSigner ...t 43
4.8.1 Using the Formula Wizard to Add Your Own Functions............... 43
4.8.2 Adding Your Own Objects to the Designercccccovvvveiiinens 44

4.9 The Viewer OCX Controlcuciriiiiiiiiiee et e e 45
491 OVEIVIBW ..o 45
49.2 REGISTIATION ..ei i 45
493 PrOPEIIES . . et 45
494 METNOAS ... 46
4.9.5 VNS Lo 47
4.9.6 Visual CH4 Hinto. e 47
4.9.7 CAB Files Packagingcoovvveiiiiiiiiii e 47
49.8 Inserting the OCX Into Your Internet Page...........cccocoevveiieiiiinn . 48

5. Programming Using the APl ... 49
B.T Programming INterfaceccooeeeie 49
5.1.1 Dynamic Link Libraries.........ccccccooi 49
5.1.2 General Notes About the Return Value.............cccooeiiiiiiiiic, 50

B.2 Programming BaSiCScceceeeaarraaaiarneeaeeee e 50
5.2.1 Database Independent CoONCePtccovvviiiiiiieieiiiiieeeeee e 50
522 Thelist& Label Job ..o 51

5.2.3 Variables, Fields and Data Typescooooeeiiiiiiiiiiiieeeeeeeeeee, 51

Contents

5.3 Invoking the DeSIgNETr.........couuuiiiiiiiiiiccc e b4
5.3.1 BasiC SChEMEiiiii 54
5.3.2 ANNOLAtIONS ..o.iiiii e 54

B.4 The Print PrOCESSu s 55
541 SUPPIVING Data. .o 55
542 Real Data Preview or Print? ... 56
54.3 Basic ProCcedure ...t 56
544 ANNOTATIONS oot 58

B.5 Printing Relational Datacccoviiiiiiiiiiii e, 60
551 Using @ Custom Print LOOP ...cvvvviiiiiiiiiiec e 60
55.2 Using the ILLDataProvider Interface............cccccoviiiiiiinii, 65
553 Handling 1:1 Relations. ... 71

5.6 Callbacks and NoOtificationS.........cccvvveeiiiiiiiiiiiien 72
5.6.1 OVEIVIBW ... 72
5.6.2 USEI ODJECES v 73
5.6.3 Definition of a Callback Routine...........cccccoovviiiiiiii 73
5.6.4 Passing Data to the Callback Routine............ccocccccoiiiiiiii, 74
5.6.5 Passing Data by Messages.......cocvvvviiiiiiiiiiiieeeeecceee 74
5.6.6 Further Hints ... 75

5.7 Advanced Programmingocccuueeeeiienniiiiiieeeeee e e e 75
5.7.1 Direct Print and Export From the Designer....................c.c.c...... 75
57.2 Drilldown Reports in Previewccccocoooiiii 77
5.7.3 Supporting the Report Parameter Pane in Preview 80
5.7.4 Supporting Expandable Regions in Previewcccccccccoei. 80
575 Supporting Interactive Sorting in Preview...............cccooveeiis 81
5.7.6 Handling Chart and Crosstab Objectscccccocoviiiiiiiiiiii, 81

5.8 Using the DOM-API (Professional/Enterprise Edition Only) 82
5.8.1 BasiC PrinCipIeScooiiiiii e 82
5.8.2 EXAMIPIES i 8b

B. APIREfEIENCEuveiiiiii it 88

6.1 Function REfEreNCEec.vvvveiiiii i 88

6.2 Callback Reference........cccccviiiiiiiiiieii i 183

6.3 Managing Preview Files.......ccoooeeiiiiiiiiiii e 200
6.3.1 OVEIVIBW ..o 200
B.3.2 The Preview APl 200

7. The EXport MOdUIESuuviiiiiiiiiiiiiiiiiiiiiiiiiiiveiiivvee e 219

7.1 Programming INterface.........cooviiiiiiiiiiiiiiiec e 219
7.1.1 Global (De)activation of the Export Modulescccccceeeeiinn. 219
7.1.2 Switching Specific Export Modules On/Off ... 220
7.1.3 Selecting/Querying the Output Format.............ccceeeiiiiiiiiiinn.. 220
7.1.4 Setting Export-specific OptionsSccovvvviiiiiiiiiiiiieee 221
7.1.5 Export Without User Interactioncccccccoiii 221
7.1.6 Querying the Export ReSultS..........ccccooiiiiiiiiiiee 221

7.2 Programming REferenCe..........ooccuuiiiiiiiiiiiiiiee e 222
7.2.1 PDF EXDOM ..ttt 222
7.2.2 EXCEl EXPOIT ovviiiiiiiiii e 225
7.2.3 WO EXPOIM.ceiiiiiiiiiiii e 231
7.2.4 PowerPoint EXPOrtc.ovviiiiiii 234
7.2.5 RTF EXPOIt oo 237
7.2.6 XPS EXPOTT ittt 240
7.2.7 XHTML/CSS EXPOIt .eeiiiiiiieiiiiiee et 240
7.2.8 MHTML EXPOIT woiiiiiiiieiiiie et 246
7.2.9 JSON EXPOTt oottt 246
7.2.10 Text (CSV) EXPOrt ..o 247
7.2.11 Text (Layout) EXPOrt........ooiiiiiiiiiiceecc e 249
7212 XML EXPOIt oo 251
7.2.13 Picture EXPOrt ... 253
7214 SVG EXPOIT.uuiiiiiiiiiiiei e 255
7215 TTY EXPOItaco 256
7.2.16 Windows Fax EXport..........coooooo 256
7.2.17 Unsupported Export Formatscocoooo 257

7.3 Digitally Sign EXport RESUIS ..., 264
7.3.1 STArt SIgNATUIE ... 264

7.3.2 Programming Interfacecocoiiiiiiiii e 264

Contents

10.
11.

12.

13.
14.

7.4 Send Export Results via E-Mailcoveiiiiiiiiii i, 265
7.4.1 OVEIVIBW ... 265
7.4.2 Setting Mail Parameters by Codecoccvvviiiiiiiiiiiiic 265
7.4.3 Sending Mail via 64 Bit Applicationcccccooiiiiiiiiiiiiii 269
7.4.4 Hints for Selecting the MAPI Serverccccccciviiiiiiiie 269

7.5 Export Files as ZIP Compressed Archivecccccceveiieiiiiiiieiinee e, 270

Miscellaneous Programming TOPICScuveeiiieiiiiiiiiiiii e 271

8.1 Passing NULL Values..........couuiiiiiiiiiiiiiii vt eeevti e 271

8.2 ROUNAING. ... s 271

8.3 OptiMizing SPEEA.....uu 271

8.4 Project Parametersciiiii ittt 271
8.4.1 Parameter TYPES . coooiiiiiiii e 271
8.4.2 Querying Parameter Values While Printing..........ccccccoooeiiiinie 272
8.4.3 Predefined Project Parametersccocvvviiiiiiiiiiiiiicceece 272
8.4.4 Automatic Storage of Form Data.........cccccvvveiiiiiiiiii 273

8.5 WeED REPOIING ... 274

8.6 Hints for Usage in Multiple Threads (Multithreading)............................. 274

8.7 SCHPLING SUPPOIM e 275
8.7.1 INEFOAUCTION .ot 275
8.7.2 Preprocessor and OpPtioNScccvvviiiiiiiiiiiii e 276
8.7.3 Quick Reference and Examples...........cooovviiiiiiiiiiiiicc 277

Error Codes and Warningsuuuvuviiiiiiiiiiiiiiiiiiirieeeinnnnnennnnnn. 280

9.1 General Ermor COAESciiiiaaaeeeeee e 280

9.2 GENEral WarniNgS e 282

9.3 Additional Error Codes of the Storage API.......ccccoeiiiiiiiiiiiiiiiicee e, 282

9.4 Additional Warnings of the Storage APlcccooiviiiiiiiiiiicccccee e, 283

Debug Tool DEBWIN ..o 284

Redistribution: Shipping the Applicationcccccviiiiiiiiiiiiiiiin. 285

11.1 System RequiremMentsccooovviiii i 285

11.2 The Standalone Viewer Application.........ccooevviiiiiiiiiiiiieee e, 285
TT.2.1 OVEIVIEW e 285
11.2.2 Command Line Parameterscccoeiiiiiiiiiiiiieeeeee 285
17.2.3 ReGISTratioN ..cci i 285
11.2.4 Necessary FileS ..o 285

11.3 List & Label Files...............

11.4 Web Designer Setup
11.4.1 Command Line Options for Windows Installer Setup 287

11,5 Other SETLINGS ..o 287

Update INformationuuuuiiiiiiiiiiiiiiiiiiiieiiiiiiiieeeeeeeeeeeeeeneeenneeennes 288

I B N LT Y U Y- SRR 288

12.2 Updating to a Newer Version of List & Labelcccccviieeiiininnnn 288
12,27 GENETAL. ..o 288
12.2.2 Updating .NET Projects.........coccceiiiiiiiiiiiiiiee e 288
12.2.3 Updating VCL Projects (e.g. Delphi).......cccooiiiiiiiiiiiii 288
12.2.4 Updating OCX Projects (e.g. Visual Basic)........c.cccccovviiiiniiinnns 288
12.2.5 Updating Projects Using the APl (e.g. C/C++)..cccoviiiiiiiiiinns 289

12.3 Important Changes..........ccooeiiiiiieeieeeeeeeeeeeeeeeeeeee e 289
12,31 VErSioN 3T oo 289
12.3.2 VErSion 30 . 289
12.3.3 VEISION 29 . 290
12,34 VEISION 28 .. .o 291
12.3.5 VEISION 27 1o 291
12.3.6 VEISION 26 ...uiiiiiiiiiiiiiiie e 291
12.3.7 VEISION 25 . 292
12.3.8 VEISION 24 ..o 292
12.3.9 VEISION 23 i 292
12.3.10 VEISION 22 1 293
T2.3.17 VErsion 271 oo 293
12.3.12 VEersion 20 ... 294

(L= T o T a0 o] o] o A PPRPRE 295

Yo 1= T 296

Contents

Introduction Before Installation

1. Introduction

With List & Label you have acquired a powerful developer component for printing reports, lists, labels, forms,
charts, barcodes and gauges.

List & Label is not a stand-alone application, but a component that is seamlessly integrated into your application
program.

With just a few lines of program code, you will give your program printing capabilities that have an attractive design
and meet professional standards.

1.1 Before Installation

1.1.1 System Requirements

Operating system: Windows 10 (Version 21H2 - 22H2), Windows 11 (Version 22H2 — 25H2), Windows Server 2019
- 2025.

.NET: .NET Framework 4.8, .NET 8/9/10. Microsoft Word or PowerPoint export requires .NET Framework 4.8 on
both the development and end user machines.

Note: Older versions which are no longer supported by the respective manufacturer ("end-of-life") may still be
used, however combit does not assure that.

Some of the described functions (or the way these are accessed) depend on version, release, patch level etc. of
your system/operating system and its configuration. Some functions may not be able to be used in all operating
systems. You will find such limitations documented in the corresponding chapters.

Important: List & Label and the third-party components it contains rely on the integrity of the Windows directory
for temporary files (% TEMP%) and the subdirectory "% TEMP%\combit\" managed by List & Label for caching
mechanisms. This requires sufficient read and write permissions for the application context, which is the case
for every Windows system by default. It must also be ensured that sufficient storage space is available and that
no automatic Windows task, such as any activated memory optimization with automatic cleanup, removes the
two directories "% TEMP%" and "% TEMP%\combit\" or their contents from the system during the runtime of the
application.

1.1.2 Licensing

List & Label is being offered in various editions, which vary regarding features and licensing conditions. You will
find a verbose description and comparison of the different editions and licensing conditions at
https://www.combit.com/reporting-tool/fags/.

1.2 After Installation

1.2.1 Start Menu

After installing List & Label, you will find the program group combit > combit List & Label 31 in the Windows start
menu. This program group enables you to access all important information regarding integration, documentation
and examples, as well as further useful tips and tricks. This group will be the starting point for the following
chapters.

1.2.2 Designer Quick Start via Sample Application

A quick way to become acquainted with the Designer and its possibilities is to use the List & Label sample
application. This standalone sample application is just for demonstration purposes and shows the various
possibilities that the Designer offers. The data is taken from a fixed sample database.

You will find the application in the start menu group. It enables you to start the List & Label Designer immediately,
and gain an overview of its functionality and flexibility through the wide variety of layout examples provided. The
Designer is started by clicking Design from the menu and selecting an entry - e.g. invoice. Before the actual start,
you can select an existing project file in the file selection dialog — or enter a new file name. The full functionality of
the List & Label Designer — from the perspective of this sample application — is now available to you.

https://www.combit.com/reporting-tool/faqs/

Introduction Important Concepts

| |1 List & Label Sample Application — % |

File Design Print Web Optiens

Discover the Report Designer

See for yourself the numerous possibilities in our sample reports.

[

el [_
et =] B
] e |

For a full test with your own data, you must first integrate List & Label into your application.
We show you how to get started.

www.combit.com | Legal Notice | Privacy Notes

In addition, the List & Label sample application allows you to print existing or newly created projects using sample
data records, or to use one of the export formats for output. Select one of the items in the Print menu. In the
subsequent print options dialog, you can choose the output destination or export format.

1.2.3 Programming Samples

In order to ensure quick familiarization with the List & Label concept, a wide variety of programming examples are
supplied with the installation. You will find these in the start menu group under "Samples".

You will find many different programming examples in the directories, depending on the installed development
environment.

Further information on the individual examples as well as explanations on the methods and components used can
be found in the List & Label Start Center, which is started directly after installation or is available in the start menu

group.

1.2.4 Documentation
You will find all available documentation under the "Documentation” start menu group.

This includes the Programmers' Manual and the Designer Manual as PDF documents. You will also find various
online help systems here, e.g. for the Designer or the List & Label components (.NET, VCL, OCX), as well as further
information on redistribution, web reporting, debug etc.

1.3 Important Concepts

1.3.1 Basic Principles

List & Label is not a standalone application but a development component that is integrated into your application.
With just a few lines of code you can enhance your application with reporting and printing capabilities of various
kinds: Reports, subreports, lists, crosstabs, charts, diagrams, gauges, forms, labels, printing, print preview, export
and web reporting.

Creating Report Templates in the Designer

The Designer functionality for interactive visual creation of reports, print templates etc. is an integrated part of the
List & Label component and therefore will become part of your application. The Designer is not a standalone
application, but it will be programmatically launched from your application. This is typically implemented within an
event handler triggered by a menu item. The Designer will show up as a modal pop-up window overlapping your
application window.

Introduction Important Concepts

You can pass on this designing capability to your end users so that they can define individual templates or adapt
the templates offered by you to personal requirements.

mN=! = | Designer - C:\Program Files (xB8]\combi#\ L 22\Semple Applicstion! Different charts.sst - o x

Reporting Overview

s A Breview

62511913 Seleet ~nothing selected 0% © L4

@

Print or Export: Generating Reports

To generate reports that have been designed by you or your end-users and send them to the printer or display
them in the print-preview all data/records to be processed is being passed on to List & Label. Depending on the
programming language this will either happen under the surface automatically when List & Label directly accesses
your application's data by using specific data providers or it is being done explicitly by your source code, e.g. if
your data is not stored in a database at all. A mixture between database data and application specific data is
possible, too.

Besides sending the report to the printer or preview, List & Label offers various other output formats such as PDF,
XHTML/CSS, XML, RTF, XLS, DOCX, TIFF, JPEG, PNG, plain text, bitmap and others. This is achieved by special
export modules. From the developer's point of view there is no difference between printing and exporting the
report.

Displaying Reports
The print preview can be used to display List & Label outputs automatically, save them to file, convert them to

other formats, send them as email, and more. Additionally, it can be embedded via a separate component into
your own dialogs resp. forms or HTML internet/intranet pages.

1.3.2 Project Types

List & Label can handle different project types: label and file card projects on the one hand, and list projects on the
other.

Labels and File Cards

These projects consist of an arrangement of objects, which are printed once (file cards) or multiple times (in
columns or rows, labels) per page.

Lists

Lists, on the other hand, consist of objects which are printed once per page, and one or more objects which are
filled repeatedly with varying contents depending on the data records. The table, crosstab and the report container
objects are responsible for these "repetitive areas" and therefore are only available in this mode.

1.3.3 Variables and Fields

List & Label distinguishes between two kinds of data fields: on the one hand there are data fields that are filled
with content once per printed page (once per label or file card), these are called "variables" in the List & Label
terminology. On the other hand, in a report, there are data fields that are filled repeatedly with different contents
for a page, e.g. the data fields of an item list of an invoice. These data fields are called "fields" in the List & Label
terminology.

For this reason, in file card or label projects only variables can be used, while in list projects both variables and
fields can occur. For printing an invoice, an application would typically declare the invoice header data such as
customer name and address as variables, while the item data such as article number, unit price, description etc.
would be passed as fields.

10

Introduction Getting Started With Programming

1.3.4 Available User Interface Languages

The List & Label Designer can be displayed in several languages (depending on the edition). Besides the Designer,
the printer, preview and export dialogs are localized as long as they are not made up of common dialogs which are
localized by the OS.

In order to integrate a language, use the corresponding language constant for LiJobOpen() or set the "Language"
property to the desired value when using a component. Also supply your customers with the language files
(cmlI31??7.Ing, cmls31??.Ing). List & Label expects the files to be in the same path as the main DLL cmlI31.dll.

1.4 Getting Started With Programming

1.4.1 Overview
The following picture shows the basic structure of List & Label from a programmer's point of view:

List & Label DLL

= L
O
VCL Control
ActiveX Control .NET Control JAVA INI
Databinding
VCL Control

Application

1.4.2 Integration With .NET

Please refer to the section "Programming With .NET" for further information. Afterwards, we recommend further
reading starting from section "The Export Modules", if applicable.

1.4.3 Integration With Delphi

Please refer to the online help for the VCL component's use.

1.4.4 Integration With C+ + Builder

Please refer to the online help for the VCL component's use.

1.4.5 Integration With C/C++

Integration of List & Label with C/C++ is typically done by directly using the API. . Please refer to the section
"Programming Using the API" for further information.

1.4.6 Integration With Visual Basic

For integration of List & Label with Visual Basic we recommend using the OCX/ActiveX component. Please refer to
the OCX online help.

If you wish to use direct DLL access via APl and no OCX component, add the file cmli31.bas, where you will find
the necessary declarations. Please refer to the section "Programming Using the API" for further information in this
case.

1.4.7 Integration With Java

Integrating List & Label into a Java application is done by adding the "combit'-package which is located in each of
the provided programming samples for Java. Programming is done by calling the API directly. See chapter
"Programming Using the API" for further information. Please also note that the provided Java Native Interface (JNI)
Wrapper DLL has to be located in the List & Label search path. Further information can be found in chapter
"Redistribution: Shipping the Application".

11

Introduction Getting Started With Programming

1.4.8 Integration With Other Programming Languages

For various programming languages, the installation of List & Label contains declaration files as well as examples.
You will find these files in the corresponding sub-directories of your List & Label installation. Follow the
documentation of your programming language to include DLL's via APl or OCX/ActiveX components.

If your programming language is not included, you can create a declaration file on your own by following the
appropriate steps for your programming language. Your programming language just needs to support invoking an
API via calling DLL functions.

In case of doubt, please contact our support.

1.4.9 Hints on Table, Variable and Field Names

For table, variable and field names, the following restrictions apply:
e Variable and field names must be unique; you can't use the same descriptor for a variable and a field.
e Following characters are allowed for the descriptor:
o First character: letter (of type UNICHAR_LETTER) or "'
o Following characters: letters (of type UNICHAR _LETTER), numbers (of type UNICHAR_NUMBER)
aswellas ', "' '$and "’
e For hierarchies and relations '." and ":' can be used.

The dot is the separator for the variable hierarchy. This way you can use e.g. "Person.Address.Street" and
"Person.Address.City" as variable or field name. In the Designer you get a hierarchical structure, i.e. below
"Person" you will find a folder "Address" with the fields "City" and "Street".

For relations see chapter "Handling 1:1 Relations".

There are two possibilities to optimize the performance of List & Label, as the internal work for processing the
variable definition APIs and the formula parsing is depending on these:

e If the option LL_OPTION_XLATVARNAMES is set, the invalid characters will be replaced with ' ' (please
implicitly note that the descriptor of two variables might become disambiguous). Without this option you
have to take care of the correct variable names yourself, but the work for List & Label is decreased.

e List & Label is case sensitive if the option LL_ OPTION_VARSCASESENSITIVE is set to TRUE, that also
increases the performance.

1.4.10 Debugging Support

A significant part of the development process of an application is the detection and removal of bugs.

List & Label offers the possibility of logging all function calls in order to facilitate the removal of faults in your
programs. All function calls including their parameters and the return value are shown on the debugging output.

These can be displayed with the combit Debwin-Tool which is included in the package. See chapter "Debug Tool
Debwin" for further details.

12

Programming With .NET Introduction

2. Programming With .NET

There are several assemblies available for .NET programming. The following chapter refers exclusively to working
with .NET and can be skipped if you do not work with .NET. In parallel, there are separate chapters for programming
with the VCL or OCX components or directly via API.

2.1 Introduction

For using List & Label with .NET several components are available, making the creation of reports on the .NET
platform as easy as it can be. This tutorial shows the most important steps to work fast and productively with List
& Label.

The complete programming interface is documented in the component help for .NET in detail. You will find it in
the Documentation folder of your installation (combit.ListLabel31.chm).

2.1.1 Integration in Visual Studio

The List & Label .NET component is automatically integrated in Microsoft Visual Studio. For other programming
environments or in case of a fresh installation of the development environment this can also be done manually.
The components in form of an assembly are located in the directory "Samples\Microsoft .NET\" of the List & Label
installation. The integration is done as follows:

e Menu bar Tools > Choose Toolbox Items...
e Select tab .NET Framework Components

e Click button Browse...

e Select combit.ListLabel31.dll

Now the List & Label components can be dragged onto a form via Drag & Drop as usual. In the properties window
the specific properties can be edited and event handlers can be added.

To integrate the List & Label .NET Help into the Visual Studio 2010 Help Viewer please follow these steps:

e Open Visual Studio 2010

e Select 'Help > Manage Help Settings' to start the Help Library Manager

e You might have to select a location for the local content at first. Confirm this dialog with 'OK.

e Select the item 'Install content from disk'

e Click 'Browse' and navigate to the 'Documentation\Files' subdirectory of your List & Label installation
e Then select 'helpcontentsetup.msha' and click 'Open'

e Back in the Help Library Manager click 'Next'

¢ In the following dialog you will see the available help files including 'combit List & Label 31 - .NET Help';
select 'Add' here

e Now click 'Update' to integrate the help into the Help Viewer
e Click 'Yes'in the Security Alert dialog to confirm the digitally signed help file

e After updating the local library click 'Finish' to complete the integration of the help. Now you can use the
List & Label .NET help by pressing F1 in Visual Studio at any time.

To remove the List & Label .NET Help from Visual Studio 2010 Help Viewer please follow the above steps and
select 'Remove content' instead.

2.1.2 Components
In the tab "combit LL31" in the toolbox the following components can be found after the installation:

Components Description

ListLabel The most important component. All
essential functions, such as print,
design and export, are combined in it.

DataSource A component that can be directly bound
to a ListLabel instance as a data source.
A description can be found in section "

Data Provider".

13

Programming With .NET First Steps

Components Description

DesignerControl A component for displaying the
Designer in custom forms.

ListLabelRTFControl An RTF editor component for use in
custom forms.

ListLabelPreviewControl A preview control that can also be used
in custom forms and supports the direct
export to PDF for example. To perform a
print into such a preview control, set the
property AutoDestination to
LIPrintMode.PreviewControl in the
ListLabel component and select the
desired preview control for the
"PreviewControl" property.

ListLabelDocument A descendant of PrintDocument. The
built-in .NET preview classes can be
used for displaying List & Label preview
files with it.

2.2 First Steps

This paragraph guides you through the first steps that are required to integrate List & Label in your existing
application.

2.2.1 Integrate List & Label
The .NET assemblies are available for .NET 8/10 as well as .NET Framework 4.8.

First a reference to the List & Label assembly has to be added to the project. If possible, references to the .NET
assemblies should be added via the NuGet package manager. This ensures that all required dependencies are
added as well. You can find our NuGet packages at https://www.nuget.org/profiles/combit.

Furthermore, special NuGet packages are available for the List & Label Enterprise Edition that contain all modules
and do not require a List & Label installation and are therefore suitable for use on e.g. build servers like Azure
DevOps. Your personal NuGet feed for use e.g. in the Visual Studio NuGet Package Manager can be found in the
file "Personallicense.txt" in your List & Label installation. Please note that your List & Label license must be
registered for this purpose.

When using these NuGet packages on a build server, you usually need a nuget.config file (see below), which must
be located in the directory of the corresponding project file, to specify where the NuGet packages should be
obtained from (see https://docs.microsoft.com/en-us/nuget/reference/nuget-config-file for more information).
Incidentally, the use of a nuget.config file is helpful for the same reason if you have defined multiple package
sources that contain List & Label NuGet packages.

<?xml version="1.0" encoding="utf-8"?>
<configuration>
<packageSources>
<!-- remove inherited connection strings -->
<clear />
<add key="<any name, e.g. Listlabel3lEnterprise>" value="<Personal NuGet feed for Enterprise
NuGet Packages>" />
<add key="nuget.org" value="https://api.nuget.org/v3/index.json" protocolVersion="3" />
</packageSources>
</configuration>

Alternatively, the NuGet packages for offline use can be found under "Samples\Microsoft .NET\NuGet" of the
installation.

Note: Please note that the List & Label NuGet packages and their dependencies use Semantic Versioning 2.0.0,
and therefore the following prerequisites apply:

- NuGet 4.3.0+

- Visual Studio 2017 version 15.3+

- Visual Studio 2015 with NuGet VSIX v3.6.0
- dotnet: dotnetcore.exe (.NET SDK 2.0.0+)

14

https://www.nuget.org/profiles/combit
https://docs.microsoft.com/en-us/nuget/reference/nuget-config-file

Programming With .NET First Steps

The assemblies themselves are located in the respective "Assemblies" subdirectory under "Samples\Microsoft
.NET\" of the installation.

In the second step an instance of the component can be created. This can be done either by the development
environment directly by dragging the ListLabel component onto a form. Alternatively, the component can also be
created dynamically:

combit.Reporting.ListLabel LL = new combit.Reporting.ListLabel();

Generally the namespaces combit.Reporting and combit.Reporting.DataProviders are prereferenced by "using" for
the whole file. This saves a lot of typing later.

using combit.Reporting;
using combit.Reporting.DataProviders;

When using dynamic creation, the component should be released by the Dispose method after its use, so that the
unmanaged resources can be released as soon as possible.

LL.Dispose();

Due to performance reasons it is recommended that you always keep an instance of the ListLabel object in memory
globally for the dynamic creation as well. It can be created in the Load event of the application's main window and
released again in the FormClosed event for example. The essential advantage is that the List & Label modules won't
be loaded and released for every new instance, which can lead to undesirable delays of frequent calls or e.g.
multiple prints.

2.2.2 License Component

Important: Before redistributing your application, make sure to set your personal license key in all instances of the
"ListLabel" object using LL_OPTIONSTR_LICENSINGINFO in order to avoid error messages from the redistributed
application. VCL, OCX and .NET component offer a corresponding property "LicensingInfo" for this purpose.

The necessary information can be found in the file "PersonalLicense.txt" in the root directory of your List & Label
installation. If more than one developer works on the project, any of the license information keys will do.

Note: In the trial version, it is not necessary to set the licensing key or an empty string can be used.

LL.LicensingInfo = "A83jHd";

Note: In a web application, use the "WindowsClientWebDesignerConfig.LicensingInfo" property.

2.2.3 Binding to a Data Source

For design and print List & Label has to have knowledge of a data source. An overview about the available data
sources can be found in the section "2.3.1 Data Providers". Of course, additional unbound, custom data can be
passed, too. An example for that can be found in "'2.5.8 Database Independent Contents".

To bind List & Label to the data source the component provides the property DataSource. The binding can be done
either interactively in the development environment by using the property windows or the SmartTags of the
component or alternatively on code level:

LL.DataSource = CreateDataSet();

The CreateDataSet() routine in this sample is a placeholder for a method of your application which prepares the
DataSet required for the report.

2.2.4 Design

The Designer is called by the Design method and will be displayed as a modal pop-up window that overlaps your
application window. A data source always has to be assigned beforehand. This is the basis for the data available
in the Designer. Therefore, there is no stand-alone design application; the data is always provided directly by the
application, List & Label itself never directly accesses the data.

The full call — with a DataSet as data source in this example — would be:

ListLabel LL = new ListLabel();
LL.DataSource = CreateDataSet();

15

Programming With .NET First Steps

LL.Design();
LL.Dispose();

By default, a file selection dialog is displayed to the user, where he can either provide a new name for the report
file and therefore create a new report or select an existing file for editing. Of course, this can also be suppressed
—the section "Important Properties of the Component" describes how to do that.

Using the Designer itself is explained in detail in the corresponding online help and in the Designer manual. The
result of the design process is generally four files that are created by the Designer. The file extensions can be
assigned freely by using the FileExtensions property of the ListLabel component. The following table describes the
files for the default case.

File Content

<Reportname>.Ist The actual project file. It contains information about the
formatting of the data to print, but not the data itself.

< Reportname >.Isv A JPEG file with a sketch/thumbnail of the project for
display in the file selection dialog.

< Reportname >.Isp File with user-specific printer and export settings. This file
should not be redistributed if the design computer is not
identical with the print computer as the printer stored in
the file usually does not exist.

< Reportname >.~Ist Is created as soon as the project is saved for the second
time within the Designer and contains a backup of the
project file.

The most important file is of course the project file. The other files will automatically be created by List & Label at
application runtime.

At print time the actual report is created by the combination of project file and data source. In practice it is often
also desired to keep the project files in a central database. How this is done is described in section "Store Project
Files in a Database".

2.2.5 Print

The print is called by the method Print(). A project file for the data structure of the selected data source must first
be created in the Designer. It is easiest to bind the component to the same data source at print and design time.
So the preview in the Designer displays the correct data and the user can easily visualize the result at runtime. A
full call of the print would be:

ListLabel LL = new ListLabel();
LL.DataSource = CreateDataSet();
LL.Print();

LL.Dispose();

By default, a file selection dialog is displayed at first, followed by a print options dialog. The section "Important
Properties of the Component" describes how these can be avoided or be prefilled if desired.

2.2.6 Export

Export means the output to one of the supported output formats like PDF, HTML, RTF, XLS, etc (the complete list
can be found in chapter "The Export Modules"). The code for starting an export is identical with a print, in the print
options dialog the user can choose any export format besides the "normal” output formats Printer, File and Preview.
If a format is to be preselected by default, the print start could be as follows:

ListLabel LL = new ListLabel();

LL.DataSource = CreateDataSet();
LL.ExportOptions.Add(L1ExportOption.ExportTarget, "PDF");
LL.Print();

LL.Dispose();

The other options (e.g. font embedding, encryption, etc.) can also be preset with default values directly from code.
This is done, as in the example above, by using the ExportOptions class; the LIExportOption enumeration contains
all supported options as values.

Most frequently these are required to execute a "silent" export. It is more convenient to use the Export() method of
the component. Please see the "Export Sample".

16

Programming With .NET Other Important Concepts

2.2.7 Important Properties of the Component

The behavior of print, design and export can be controlled by some of the component's properties of the
component. The most important are listed in the following table:

Property Function

AutoProjectFile Name of the project file to use. This is the default name
for the project if a file selection dialog is provided.
Otherwise it is the name of the project to use (Default:
empty).

AutoDestination Output format. If desired a format can be forced for the

user by this property, e.g. Print is only allowed to printer
or preview (Default: LIPrintMode.Export).
If a selection of export formats is to be allowed, it can be
done by setting LIOptionString.ExportsAllowed. An
example can be found in section "Restriction of Export
Formats".

AutoFileAlsoNew Sets if the user is allowed to use a new file name for
design in order to create a new project (Default: true).

AutoProjectType Sets the project type. The different project types are
described in section "Project Types' (Default:
LIProject.List).

AutoShowPrintOptions Sets if the print options dialog is displayed or suppressed
(Default: true, display).

AutoShowSelectFile Sets if the file selection dialog is displayed or suppressed
(Default: true, display).

AutoMasterMode Used together with the DataMember property to pass the
master/parent table of 1:n linked data structures as
variables. An example can be found in section "Variables,
Fields and Data".

2.3 Other Important Concepts
2.3.1 Data Providers

Providing data in List & Label is done with data providers. These are classes that implement the interface
IDataProvider from the combit.Reporting.DataProviders namespace. Within this namespace a lot of classes are
already contained which can act as a data provider. A detailed class reference can be found in the .NET component
help.

For data formats that are apparently not directly supported, a suitable provider is found in most cases anyway.
Business data from applications can generally be passed through the object data provider. If the data is present in
comma-separated form, the data provider from the "Dataprovider” sample can be used. Many other data sources
support the serialization to XML, so that the XmIDataProvider can be used. If only a small amount of additional
information is to be passed, it is possible to do it directly. A sample is shown in paragraph "Database Independent
Contents".

Once List & Label is bound to a DataProvider, it supports the following features automatically if applicable to the
data source:

e real data preview in the Designer
e report container and relational data structure
e sortings
e drilldown
The following overview lists the most important classes and their supported data sources.

AdoDataProvider
Offers access to data of the following ADO.NET elements:
e DataView
e DataTable
e DataViewManager
e DataSet

17

Programming With .NET Other Important Concepts

The provider can be assigned implicitly by setting the DataSource property to an instance of any of the supported
classes. Of course the provider can also be explicitly assigned.

This data provider automatically supports a single level sorting by any field, ascending or descending.
Example:

ListLabel LL = new ListLabel();

AdoDataProvider provider = new AdoDataProvider(CreateDataSet());
LL.DataSource = provider;

LL.Print();

LL.Dispose();

DataProviderCollection

This data provider can be used to combine multiple other data providers into one data source. Use it if you have
e.g. multiple DataSet classes from where to pull data or if you would like to have a mix of XML and custom object
data. Example:

This provider supports the same sortings that the providers in the collection do support.

DataSet dsl = CreateDataSet();
DataSet ds2 = CreateOtherDataSet();

// combine the data from dsl and ds2 into one datasource
DataProviderCollection providerCollection = new DataProviderCollection();
providerCollection.Add(new AdoDataProvider(dsl));
providerCollection.Add(new AdoDataProvider(ds2));

ListLabel LL = new ListLabel();

LL.DataSource = providerCollection;

LL.Design();

LL.Dispose();

DataSource

This data provider is in an exceptional position because it can be inserted as a component directly from the toolbox.
The component provides a few properties, which are also available through the SmartTags. The most important
property is “ConnectionProperties”. By using the corresponding property editor, a connection string can be directly
created in the development environment that provides access to following data sources:

e Microsoft Access

e ODBC data sources (e.g. Excel data)
e Microsoft SQL-Server (also file based)
e Oracle databases

Once configured the data source is available in the selection window for the DataSource of the ListLabel
component and can therefore be directly assigned. By clicking the link “Open report designer...” in the SmartTags
of the ListLabel component the Designer can also be directly opened from within the development environment,
requiring not a single line of code to access the data of a DataSource.

This data provider automatically supports a single level sorting by any field, ascending or descending.

DbCommandSetDataProvider

Allows combination of multiple IDbCommand implementations into one data source. It can be used e.g. to access
multiple SQL tables and define relations between them. Another possibility is to combine data from e.g. SQL and
Oracle databases into one data source.

This data provider automatically supports a single level sorting by any field, ascending or descending.

ObjectDataProvider

This data provider can be used to access object structures. It can work with the following types/interfaces:
e |Enumerable (requires at least one record though)
e |Enumerable<T>
e |ListSource

In order to influence the property names and types, you may either implement the ITypedList interface on your
class or use the DisplayNameAttribute. To suppress members, use the Browsable(false) attribute on the members.

The provider can also parse empty enumerations as long as they are strongly typed. Otherwise, at least one
element is required in the enumeration and this first element determines the type that is used for further parsing.

The provider automatically supports sorting as soon as the data source implements the IBindingList interface.
You may also use this data provider to access LINQ query results, as they are IEnumerable<T>.

18

Programming With .NET Other Important Concepts

When using EntityCollection<T> objects as data source the ObjectDataProvider first checks the state of the sub
relation by the IsLoaded property and dynamically calls Load() if necessary. The data is provided when needed with
it. Example:

class Car

{
public string Brand { get; set; }
public string Model { get; set; }
¥

List<Car> cars = new List<Car>();

cars.Add(new Car { Brand = "VW", Model = "Passat"});
cars.Add(new Car { Brand = "Porsche", Model = "Cayenne"});
ListLabel LL = new ListLabel();

LL.DataSource = new ObjectDataProvider(cars);

LL.Design();

LL.Dispose();

OleDbConnectionDataProvider

Allows binding to an OleDbConnection (e.g. Access database file). This data provider automatically supports a
single level sorting by any field, ascending or descending.

Example:

OleDbConnection conn = new OleDbConnection("Provider=Microsoft.Jet.OLEDB.4.0;Data Source=" +
DatabasePath);

OleDbConnectionDataProvider provider = new OleDbConnectionDataProvider(conn);

ListLabel LL = new ListLabel();

LL.DataSource = provider;

LL.Design();

LL.Dispose();

OracleConnectionDataProvider

Allows binding to an OracleConnection. This data provider automatically supports a single level sorting by any field,
ascending or descending.

SqlConnectionDataProvider

Allows binding to a SglConnection. This data provider automatically supports a single level sorting by any field,
ascending or descending.

Example:

SglConnection conn = new SqlConnection(Properties.Settings.Default.ConnectionString);
SqlConnectionDataProvider provider = new SqlConnectionDataProvider(conn);

ListLabel LL = new ListLabel();

LL.DataSource = provider;

LL.Design();

LL.Dispose();

XmiDataProvider

Allows accessing XML data files easily. No schema information in XML/XSD files will be used and no constraints
will be handled. The main purpose of this class is to provide a fast and easy access to nested XML data. This data
provider does not support any sorting. Example:

XmlDataProvider provider = new XmlDataProvider(@"c:\users\public\data.xml");
ListLabel LL = new ListLabel();

LL.DataSource = provider;

LL.Design();

LL.Dispose();

2.3.2 \Variables, Fields and Data Types

Variables and fields are the dynamic text blocks for reports and contain the dynamic part of the data. Variables
usually change once per page or report — an example is the header data of an invoice with invoice number and
addressee. Fields on the other hand usually change for every record; a typical example would be the item data of
an invoice.

Within the Designer variables are always offered outside of the report container (the "table area”), fields only inside
of it, and can only be used there. The separation serves mainly to help the end user. If he were to place a field in

19

Programming With .NET Other Important Concepts

the "outside area”, the result would - depending on the print order - either be the content of the first or the last
record.

Both identifier types (fields and variables) can be ordered hierarchically and are displayed in a folder structure in
the Designer. The database table names are automatically added by the databinding so that all data from the
"OrderData” table are displayed in a folder "OrderData”.

Custom data can also be ordered hierarchically by using a dot as a hierarchy separator (e.g.
"AdditionalData.UserName”). How to add custom data can be found in the section "Database Independent
Contents".

Variables and Fields With Databinding

Consider the case of a 1:n linked data structure such as "InvoiceHeader"” or "Invoiceltems”. The header data should
usually be declared as variables whereas the actual invoice items should be declared as fields. The properties
DataMember and AutoMasterMode can be used to achieve this:

ListLabel LL = new ListLabel();
LL.DataSource = CreateDataSet();

// Order data as variables
LL.DataMember = "InvoiceHeader";
LL.AutoMasterMode = L1AutoMasterMode.AsVariables;

LL.Design();
LL.Dispose();

At print time a merge print is automatically generated, if e.g. an invoice form has been designed, a single invoice
with its own page numbering, aggregation, etc. is created for each record from the invoice head table.

Master-Data

Detail-Data

Effect of the option AutoMasterMode. Left: “AsVariables”, right: “AsFields”.

Data Types

Variables and fields are passed in typed form, i.e. depending on the content of the database as text, number, etc.
The databinding usually cares for that automatically, an explicit passing/assignment of the type is only necessary
when custom data is passed additionally. The correct data type is usually also preselected (e.g. when passing
DateTime objects).

The following table shows the most important data types.

Data type Usage

LIFieldType.Text Text.

LIFieldType.RTF RTF formatted text. This field type can be used in a
RTF field or RTF object in the Designer.

LIFieldType.Numeric Integer. The databinding automatically differs

LIFieldType.Numeric_Integer between floating point numbers and integer values.

LIFieldType.Boolean Logical values.

LIFieldType.Date Date and time values (DateTime).

LIFieldType.Drawing Drawing. Generally, the file name is passed.

Directly passing a memory handle is possible for
Bitmaps and EMF files. Databinding automatically
checks the content of Byte fields and declares
them as drawing if a suitable format is found.

20

Programming With .NET Other Important Concepts

Data type Usage

LIFieldType,Barcode Barcode. Barcodes are most easily passed as
instances of the LIBarcode class directly in the Add
methods of the Variables and fields property.

LIFieldType.HTML HTML. The content of the variable is a valid HTML
stream, a file name or an URL.
LIFieldType.PDF PDF document. The content of the variable is a valid
file name.
2.3.3 Events

The following table shows some important events of the ListLabel component. A full reference can be found in the
component help for .NET.

Event Usage
AutoDefineField/ These events are called for each field or variable
AutoDefineVariable before passing it to List & Label. With the event

arguments you can manipulate the name and
content or completely prevent the declaration of
the element. Examples can be found in section
"Database Independent Contents".

AutoDefineNewPage This event is triggered for every new page when
using databinding. Here, you can register
additional required page-specific variables for the
application which are not part of the data source
by using LL.Variables.Add(). Examples can be
found in section ‘'"Database Independent
Contents".

AutoDefineNewLine The event is triggered for every new line. If the
application requires additional line-specific data
which is not part of the data source itself, it can be
added in this event by using LL.Fields.Add().
Examples can be found in section "Database
Independent Contents".

DrawObject These events are each called once before and
DrawPage after printing the corresponding elements, e.g. for
DrawTableLine each table cell (DrawTableField). The event
DrawTableField arguments contain a Graphics object and the

output rectangle so that the application can output
custom information additionally. That could be a
special shading, a "Trial” character or a complete
specific output.

VariableHelpText You can support your users by displaying help
texts for each variable and field in the Designer.

2.3.4 Project Types

Three different modes of the Designer are available as report type. Which mode is used depends on the value of
the property AutoProjectType.

Lists

This is the default and matches the value LIProject.List for the AutoProjectType property.

Typical fields of use are invoices, address lists, reports with charts and cross tables, multi-column lists, briefly all
types of reports where a tabular element is required. The report container is only available in this mode (see section
'2.3.8 Report Container").

Labels

This project type matches the value LIProject.Label for the AutoProjectType property.

It is used for the output of labels. As there are no tabular areas and also no report container, only variables and no
fields are available (see section "Variables, Fields and Data").

If the used data source contains multiple tables, e.g. products, customers, etc. the source table for printing labels
can be selected by the DataMember property of the component:

21

Programming With .NET Other Important Concepts

ListLabel LL = new ListLabel();
LL.DataSource = CreateDataSet();

// Products as data source
LL.DataMember = "Products";

// Select label as project type
LL.AutoProjectType = L1Project.Label;

LL.Design();
LL.Dispose();

Cards
This project type matches the value LIProject.Card of the AutoProjectType property.

Card projects are a special case of label projects with exactly one page-filling label. Typical fields of use are printing
file cards (e.g. all customer information at a glance) or mail merges. Activation is the same as "Labels", the same
hints and restrictions apply therefore.

2.3.5 Varying Printers and Printing Copies

List & Label offers a comfortable support of splitting a report to different printers or the output of copies with a
"Copy” watermark. The best is that these are all pure Designer features that are automatically supported by List &
Label.

Regions

The regions' purpose is to split the project into multiple page regions with different properties. Typical fields of use
are e.g. different printers for first page, following pages and last page. Further applications are mixing Portrait and
landscape format within the same report.

You can see a demonstration e.g. in the List & Label Sample Application (in the start menu's root level) under Design
> Extended Samples > Mixed portrait and landscape.
Issues and Copies

Both issues' and copies' purpose is to output multiple copies of the reports. Copies are "real” hardware copies,
meaning that the printer is assigned to create multiple copies of the output. Of course all copies are identical and
will be created with the same printer settings.

If the output is to have different properties (e.g. Original from tray 1, copy from tray 2) or a "Copy" watermark is to
be output, issues are the way to go. The property "Number of Issues” in the Designer has to be set to a value
greater than one. Then the function "Issuelndex” is available for all regions, so that a region with the condition
"Issuelndex()==1" (Original) and another with the condition "Issuelndex()==2" (Copy) can be created.

The objects in the Designer get a new property "Display Condition for Issue Print” with which the printing of a
watermark can be realized in a similar way.

You can see a demonstration e.g. in the List & Label Sample Application (in the start menu's root level) under Design
> Invoice > Invoice with issue print.

2.3.6 Edit and Extend the Designer

The Designer is not a "Black Box" for the application, but can be manipulated in many ways. Besides disabling
functions and menu items, user-specific elements can be added that move calculations, actions or outputs to the
function logic.

Menu Items, Objects and Functions

Starting point for Designer restrictions is the DesignerWorkspace property of the ListLabel object. In the following
table the properties listed can be used to restrict the Designer.

Property Function

ProhibitedActions This property's purpose is to remove single menu items from
the Designer.

ProhibitedFunctions This property's purpose is to remove single functions from
the Designer.

ReadOnlyObjects This property's purpose is to prevent objects' editability in the
Designer. The objects are still visible; however they can't be
edited or deleted within the Designer.

22

Programming With .NET Other Important Concepts

The following example shows how the Designer can be adjusted so no new project can be created. In addition the
function "ProjectPath$” will be removed and the object "Demo” is prevented from being edited.

ListLabel LL = new ListLabel();
LL.DataSource = CreateDataSet();

// Restrict Designer
LL.DesignerWorkspace.ProhibitedActions.Add(L1DesignerAction.FileNew);
LL.DesignerWorkspace.ProhibitedFunctions.Add("ProjectPath$");
LL.DesignerWorkspace.ReadOnlyObjects.Add("Demo");

LL.Design();
LL.Dispose();

Extend Designer
The Designer can be extended by user-specific functions, objects and actions.

User-specific functions can be used to move more complex calculations to the application or add functions which
are not covered by the Designer by default.

An example for adding a new function can be found in the section "Extend Designer by Custom Function".

Examples for user-specific objects or actions as well as another user-specific function can be found in the "Designer
Extension Sample".

2.3.7 Objects in the Designer

Some objects in the Designer only serve for graphical design (e.g. Line, Rectangle, Ellipse). However, most of the
other objects interact with the provided data. Specific data types are available for that or there are conversion
functions which allow converting contents for use in the corresponding object. The following paragraphs give an
overview of the most frequently used objects, their corresponding data types and Designer functions for converting
contents.

The hints for the single objects are also valid in the same or similar way for (Picture, Barcode, etc.) columns in table
elements.

Text

A text objects consists of multiple paragraphs. Each of these paragraphs does have specific content. This can be
either a variable or a formula which combines multiple data contents. To display single variables, usually no special
conversion is required. If multiple variables of a different type (see section "Data Types") are to be combined within
a formula, the single parts have to be converted to the same data types (e.g. string). An example for the
combination of numbers and strings would be:

"Total: "+Str$(Sum(Article.Price),0,2)

The following table lists some of the conversion functions, which are frequently needed in this context.

From /To Date Number Picture Barcode Text
Date - DateToJulian() - - Date$()

. FStr$()
Number JulianToDate() - - Barcode(Str$()) Str$()
Picture - - - - Drawing$()
Barcode - Val(Barcode$()) - Barcode$()
Text Date() Val() Drawing() Barcode() -

Picture

The content of a picture object is set via the property window. The property Data Source offers three values File
Name, Formula and Variable.

e The setting File Name is used for a fixed file, such as a company logo. If the file is not supposed to be
redistributed it can be embedded in the report itself. The file selection dialog offers the appropriate option.

e With Formula, the content can be set by a string containing a path. The required function is "Drawing”.
e With Variable, contents already passed as a picture can be displayed (see section "Data Types").

23

Programming With .NET Other Important Concepts

Barcode

The content of a barcode object is set in a dialog. This dialog offers the three options Text, Formula and Variable
for the data source.

e The setting Text is used for fixed text/content in the barcode. In addition to the content, the type — e.g. with
2D-Barcodes — and other properties for error correction or encoding can be set.

e With Formula the content can be set by a string which contains the barcode content. The required function
is "Barcode”.

¢ With Variable contents already passed as a barcode can be displayed (see section "Data Types").

RTF Text

The content of a RTF-Text object is set in a dialog. This dialog offers the options (Free Text) or a selection of
possible passed RTF variables (see below) under Source

e The setting (Free Text) is used for fixed text/content in the RTF object. Within the object, data content can
be used at any position (e.g. for personalized multiple letters) by clicking the formula icon in the toolbar.

e By selecting a variable, contents already passed as RTF can be displayed (see section "Data Types").

HTML

The content of an HTML object is set in a dialog. This dialog offers the three options File, URL and Formula as a
data source.

e The setting File is used for a fixed HTML file.

e With URL, a URL can be passed from where the HTML content should be downloaded.

e With Formula, contents already passed as an HTML stream can be displayed (see section "Data Types").
Also see the hint for "HTML Formatted Text" in section "Variables, Fields and Data Types".

2.3.8 Report Container

The report container is the central element of list projects. It allows displaying tabular data (also multi-columnar or
nested), statistics and charts as well as cross tables. Data can also be output in different form — e.g. at first for a
graphical analysis of the sales by years and then in a detailed tabular list.

The contents of the container are visible underneath the Report Container object in the "Objects" tool window.
Using this window, new content can be added or existing content can be edited. The window is a sort of
"screenplay” for the report since the exact order of the single report elements is shown in it.

Ohbjects x

a-[] Project
----- 7 Background
----- A Header
----- A Header2
= Report Container
4[4 [Table: Customers [CustomerlD [+]]
y [Table: Orders
[Table: Order Details
----- A Print info

Objects| Layers | Preview
The Objects tool window in the Designer

To make the report container available, a data provider (see section "Data Providers") has to be used as data source.
Generally, it is also possible to perform the complete printing on your own by using the low-level API functions of
the LICore object, however this is not the recommended practice since many features (Designer preview,
Drilldown, report container, ...) would have to be specially supported. If in doubt, it makes more sense to write
your own data provider. See section "Database Independent Contents".

All provided list samples make use of the report container and therefore provide demonstration material for the
different operation purposes.

A detailed description for using this element can be found in the Designer Manual under section "Inserting Report
Container”.

2.3.9 Object Model (DOM)

Whereas the Designer is providing a very comfortable and powerful interface for editing project files, it can often
be desired to set object or report properties per code. For example, the application can display a dialog prior to the
Designer with a data preselection and then start the Designer with a project already prepared with this selection.
An example for that can be found in the "Simple DOM Sample".

24

Programming With .NET Other Important Concepts

Access to the object model is only available from the Professional Edition and higher.

The following table lists the most important classes and properties of the namespace combit.Reporting.Dom.

Class Function

ProjectList The actual project classes. These represent the root
ProjectLabel element of the project. Key methods are Open, Save and
ProjectCard Close.

<Project>.Objects A list of all objects within the project. The objects are

descendants of ObjectBase and each object contains its
own properties and enumerations (e.g. Text paragraphs).

<Project>.Regions An enumeration of the layout regions of the project. A
page dependent printer control can be realized this way
for example. Further information can be found in section
"Regions".

ObjectText Represents a text object. Key property is Paragraphs, the
actual content of the text.

ObjectReportContainer Represents a report container. Key property is Subltems,
the actual content of the report container.

SubltemTable Represents a table within the report container. It consists
of different line regions (Lines property), which have
different columns (Columns property of a line).

Within the single classes, the properties can easily be browsed via IntelliSense. A complete reference of all classes
can be found in the component help for .NET.

2.3.10 List & Label in WPF Applications

As List & Label itself is a non-visual component, it can be used in WPF applications as well as in WinForms
applications. The Designer itself is no WPF window, however this does not affect its functionality. The WPF Viewer
can be used for displaying preview files and is a replacement for the WinForms PreviewControl.

Please note that the WPF viewer relies on the existence of the XPS Document Writer printer driver on the target
system. If the driver is not available, documents cannot be displayed.

2.3.11 Error Handling With Exceptions

List & Label defines a number of internal exceptions, which are all derived from the common base class
ListLabelException and therefore can be caught at a central location. If the application is supposed to carry out its
own Exception handling, calls to List & Label can be enclosed by an Exception handler:

ListLabel LL = new ListLabel();
LL.DataSource = CreateDataSet();

try
{
LL.Design();
¥
catch (ListLabelException ex)
{
MessageBox.Show(ex.Message);
)

LL.Dispose();

The Message property of the Exception class contains an error text, which — if a corresponding language kit is
present — is also generally localized and can be displayed directly to the user.

A complete reference of all Exception classes can be found in the component help for .NET.

2.3.12 Debugging

Problems occurring on the developer PC can be easily found in most cases. The usual features of the development
environment can be used to spot a problem relatively quickly. The first step is to catch any occurring exceptions
and to find their cause (see section "Error Handling With Exceptions").

25

Programming With .NET Other Important Concepts

As a development component List & Label is naturally run under a variety of different constellations on the end
user side. To find problems there as easily as possible a dedicated debug tool is available which provides a logging
function for problems occurring rarely or only on certain systems so problems can also be examined under systems
without a debugger.

Of course, the logging function can also be used on the developer PC and provides the possibility to check all calls
and return values at a glance as well.

Create Log File

If a problem only occurs on a customer system, the first thing to do is to create a log file. The tool Debwin can be
used for this purpose. It can be found in the "Tools" directory of the List & Label installation.

Debwin has to be started before the application. If the application is started afterwards, all calls of the component
with their return values as well as additional information about module versions, operation system, etc. will be
logged.

Every exception thrown under .NET represents a negative value of a function in the log. There is usually more
helpful information in the log.

If the application is supposed to create debug logs without the help of Debwin, this can be done in the configuration
file of the application. Logging can be forced as follows:

<configuration>

<appSettings>
<add key="ListlLabel DebuglLogFilePath" value="C:\Users\Public\debug.log" />
<add key="ListLabel EnableDebug" value="1" />

</appSettings>

</configuration>

Custom Logging Mechanisms & Logs in Web Applications

Capturing log messages from List & Label using Debwin and the integrated log file writer are simple and convenient
solutions for regular desktop applications.

However, for web applications, Windows services and multi-user systems this approach is of a very limited
usefulness: Debwin and the integrated log file capture the log messages from all List & Label instances of a process
and there is no separation between the outputs of concurrently running print jobs.

For those scenarios implementing a custom logging mechanism or using one of the popular logging frameworks
like NLog or log4net becomes advisable. For that purpose, create a new class deriving from LoggerBase or
implementing the /L/Logger interface directly. Passing such a logger object to the constructor of the ListLabel
object will cause all log ouputs of this specific List & Label job to be sent to the specified logger. You may then
filter the messages by different levels (Debug, Information, Warning and Error) and categories (e.g. data provider,
.NET component, printer information, ...).

The included "Custom Logger Sample" contains examples of an own logger implementation as well as adapters
which connect the prevalent logging frameworks NLog and log4net with the logging interface of List & Label.

Example: Redirecting log output to NLog:

ILogger nloglLogger = NLog.LogManager.GetLogger("MyApp.Reporting");
ILlLogger llLogger = new ListLabel2NLogAdapter(nloglLogger);
ListLabel LL = new ListlLabel(llLogger);

Please note:

e The properties "Debug" and "DebuglLogFilePath" of the ListLabel class are ignored as soon as a custom
logger is passed to the constructor.

e To avoid a strong decrease in performance, reduce the log outputs in your /L/Logger implementation to
the minimum using the WantOutput() method.

e Most of the included data providers (optionally) also support an external logger object. Those data
providers implement the /SupportsLogger interface and provide a SetLogger() method. If a data provider
is not assigned a custom logger object, it inherits the logger of the ListLabel object.

Tip for NLog: Often log outputs appear as sudden bursts. Use the AsyncWrapper target of NLog for an async
processing of the log messages so List & Label does not have to wait on it.

26

Programming With .NET Other Important Concepts

2.3.13 Repository Mode for Distributed (Web) Applications

If reports are to be used in distributed applications such as web applications, all required files need to be shared
between the systems involved or between the client and the server and kept synchronized at all times. Hence, it
is a good idea to save the project files in a central database. However, this solution can become rather complex,
especially when a project references pictures, drilldown projects, and other external files via /ocal data paths, which
then also need to be valid on another system.

With repository mode, the use of local files in a project can be done away with entirely, and List & Label projects
as well as all the files they require can be managed at a central location (the so-called repository) with little effort -
such as in a database or by a web service.

Basic Principles

In repository mode, List & Label does not save and load the files used in a report on its own. Instead of file paths
and names, unique repository IDs are used. You will need to implement the /Repository interface yourself and pass
it to the ListLabel object. From this point onwards, List & Label will query your user-defined repository for the file
content belonging to a repository ID, or transmit the ID along with the corresponding file content to the repository
to be saved. Whether the files in the repository are managed by an SQL database, a web service, or some other
storage solution depends entirely on your /Repository implementation. In this case, loading and saving of entries
in the repository takes place exclusively via streams.

The following schematic diagram shows how a report with the ID "123" is loaded via an IRepository implementation
managing an internal SQL database:

@ Load (ID = 123) @ SELECT ... FROM ReportFiles
WHERE ID = 123

IRepository
Implementation

9 return Stream 9 return data record

Implementation

Since we no longer work with file paths internally, but with repository IDs, it is important to understand their
structure. A repository ID is a string consisting of two parts with the following structure:

Prefix: repository://
ID: {563F875F0-6177-8AD5-01B44E3A9867}
Sample: repository.//{63F875F0-6177-8AD5-01B44E3A9867}

All functions such as Design, Print, Export, ProvidelnformationReadOnlyBase.Repositoryld

in WebReportDesignerController.OnProvidelListLabel etc., which previously received the file path of the project
(e.g., C:\Reports\invoice.lst), now receive the complete repository ID (e.g., repository.//{53F875F0-6177-8AD5-
01B44E3A9867%) instead:

// Without repository mode:
LL.Design(L1Project.List, "C:\Reports\Invoice.lst")

// With repository mode — also applies to Export() and/or Print():

LL.FileRepository = new MyCustomRepository(..);
LL.Design(L1Project.List, "repository://{53F875F0-6177-8AD5-01B44E3A9867}")

All functions of the implementation of the IRepository interface are also passed the complete repository ID (prefix
+ ID) as a parameter. In repository mode, "files" become "repository items" (elements) and file names become

27

Programming With .NET Usage in Web Applications

"repository IDs". In addition to the ID, each repository item (element) has a type, a timestamp, and an identifier
(variable-length string containing internal information). Your repository implementation must therefore be able to
store and retrieve at least these four pieces of information for each repository item (element) in addition to the file
content.

You will find a simple repository implementation in the ASP.NET sample projects (class SQLiteFileRepository)
which provides a repository with an SQLite database for data storage.

For detailed descriptions of the methods to be implemented in the /Repository interface, please refer to the
.NET online help (combit.ListLabel31.chm).

Tips

e Use the class RepositorylmportUtil to import existing local files and/or create new projects in the
repository.

* You can use the RepositoryltemDescriptor class to change the display name shown in the selection
dialogs in the Designer instead of the internal repository ID.

e Accessing the repository takes place sequentially. However, if you use the same repository object for
multiple ListLabel instances, or if the data storage used is not thread-safe, then synchronization is
required.

2.4 Usage in Web Applications

List & Label can also be used within web applications, albeit with a number of limitations. For ASP.NET-based web
applications, List & Label contains components for displaying reports in the web browser, which also support
complex features such as drill-down, as well as an independent version of the Designer with which reports can be
designed on the server with the familiar List & Label Designer (Web Designer).

For general information, see the List & Label .NET Help in the combit.Reporting.\Web Namespace. An overview of
the available Web Controls can also be found in the .NET Help in the Web Reporting Overview.

2.5 Examples
The examples in this paragraph show how some typical tasks can be solved. The code can serve as a template for
your own implementations.

For the sake of clarity, the usual error handling is omitted here. All exceptions will be caught directly in the
development environment. For "real" applications we recommend exception handling as described in section
"Error Handling With Exceptions".

2.5.1 Simple Label

To print a label, use the project type LIProject.Label. If a data source with multiple tables, such as a DataSet, is
connected, the desired data for the label can be selected by the DataMember property.

ListLabel LL = new ListLabel();
LL.DataSource = CreateDataSet();

// Products as data source
LL.DataMember = "Products";

// Select label as project type
LL.AutoProjectType = L1Project.Label;

// Call Designer
LL.Design();

// Print

LL.Print();
LL.Dispose();

25.2 Simple List

Print and design of simple lists is the "default” and can be started with just a few lines of code:

28

https://www.combit.net/go?3227
https://www.combit.net/go?3229

Programming With .NET Examples

ListLabel LL = new ListLabel();
LL.DataSource = CreateDataSet();

// Call Designer
LL.Design();

// Print
LL.Print();
LL.Dispose();

2.5.3 Invoice Merge

An invoice merge is an implicit merge print. The head or parent data contains one record for each document which
is linked 1:n with the detail or child data. To design and to print such a document the parent table has to be passed
to List & Label by the DataMember property. Furthermore, the AutoMasterMode property has to be set to
AsVariables as shown in the following example:

ListLabel LL = new ListLabel();
LL.DataSource = CreateDataSet();

// Order data as variables
LL.DataMember = "InvoiceHeader";
LL.AutoMasterMode = L1AutoMasterMode.AsVariables;

// Call Designer
LL.Design();

// Print
LL.Print();
LL.Dispose();

2.5.4 Print Card With Simple Placeholders

Printing a full-page project which simply contains placeholders set by the application is achieved easily by binding
it to a suitable object:

public class DataSource

{
public string Textl { get; set; }
public double Numberl { get; set; }

}

// Prepare data source

object dataSource = new DataSource { Textl = "Test", Numberl = 1.234 };
ListLabel LL = new ListLabel();

LL.DataSource = new ObjectDataProvider(dataSource);

LL.AutoProjectType = L1Project.Card;

// Call Designer
LL.Design();

// Print
LL.Print();
LL.Dispose();

2.5.5 Sub Reports
Structuring of reports by using the report container is a pure Designer feature. Therefore there is no difference
from the "normal” list as shown in section "Simple List”

For using sub tables, it is required that parent and child data are relationally linked. So the first step is to design a
table element for the parent table in the report container. The next step will be to add a sub element with the child
data by the toolbar in the "Objects" window.

At print time the corresponding child sub report will be automatically added for each record of the parent table.
For example, the List & Label Sample Application (in the start menu's root level) demonstrates this under Design >
Extended Samples > Sub reports and relations.

29

Programming With .NET Examples

2.5.6 Charts

The chart function is also automatically supported by the report container. See section "Simple List".

The List & Label Sample Application (in the start menu's root level) contains a variety of different chart samples
under Design > Extended Samples.

2.5.7 Cross Tables

Not surprisingly, cross tables will be implemented the same way as described in section "Simple List".

The List & Label Sample Application (in the start menu's root level) contains a variety of different cross table samples
under Design > Extended Samples.

2.5.8 Database Independent Contents

Data is not always available in a database or a DataSet. It can be required to output further data in addition to the
data from the data source, such as a user name within the application, the project name or similar information. In
some cases, no suitable data provider seems to be available at first. These cases will be examined in the following
paragraphs.

Pass Additional Contents

If only a few variables or fields are to be added to the data of the data source, there are two possibilities:

e |f the data is constant during the runtime of the report, it can just be added prior to the design or print call
by using LL.Variables.Add.

e If the data changes from page to page or even from line to line, the information can be passed within the
AutoDefineNewPage or AutoDefineNewLine events by using LL.Fields.Add or LL.Variables.Add.

The following example shows both approaches:

ListLabel LL = new ListLabel();
LL.DataSource = CreateDataSet();

// Define additional data fields
LL.Variables.Add("AdditionalData.UserName", GetCurrentUserName());
LL.Variables.Add("AdditionalData.ProjectName ", GetCurrentProjectName());

// Add event handling for own fields
LL.AutoDefineNewLine += new AutoDefineNewLineHandler(LL_AutoDefineNewLine);

// Call Designer
LL.Design();

// Print

LL.Print();
LL.Dispose();

void LL_AutoDefineNewLine(object sender, AutoDefineNewLineEventArgs e)

{
// Switch to next record if necessary
// GetCurrentFieldValue is function of your application
// which returns the content of a data field.
LL.Fields.Add("AdditionalData.AdditionalField", GetCurrentFieldValue());
}

Suppress Data From a Data Source

Particular fields or variables that are not needed (e.g. ID fields which aren't required for printing) can be suppressed
by using the AutoDefineField and AutoDefineVariable events.

ListLabel LL = new ListLabel();
LL.DataSource = CreateDataSet();

// Add event handling for suppressing fields
LL.AutoDefineField += new AutoDefineElementHandler(LL_AutoDefineField);

// Call Designer
LL.Design();

// Print
LL.Print();

30

Programming With .NET Examples

LL.Dispose();

void LL_AutoDefineField(object sender, AutoDefineElementEventArgs e)

if (e.Name.EndsWith("ID"))
e.Suppress = true;

Custom Data Structures / Contents

For data content apparently not directly supported, a suitable provider is found in most cases anyway. Business
data from applications can generally be passed through the object data provider, if the data is present in comma-
separated form, the data provider from the "Dataprovider” sample can be used. Many other data sources support
the serialization to XML, so that the XmIDataProvider can be used.

Your own class that implements the |DataProvider interface can be used, too, of course. A good starting point is
the DataProvider sample which demonstrates a simple CSV data provider. Often one of the existing classes can
be used as base class. If for example a data source is to be connected that implements the IDbConnection
interface, it can be inherited from DbConnectionDataProvider. Only the Init method has to be overwritten, where
the available tables and relations have to be provided. The component help for .NET provides an example of how
this is done for SQL Server data with the SglConnectionDataProvider. Most database systems provide similar
mechanisms.

At github.com/combit/NETDataProviders you'll find Open Source implementations for a range of other data sources
like MySQL, PostgreSQL, DB2 and Oracle. These may be a good starting point for your own implemetation as well.

25.9 Export

The export formats can be completely controlled "remotely" so that no interaction by the user is required anymore.
Additionally, the selection of formats can be restricted as required or desired for the specific report.

Export Without User Interaction

This can be easily done by using the ExportConfiguration class of the ListLabel component.

ListLabel LL = new ListLabel();
LL.DataSource = CreateDataSet();

// Set target and path (here: PDF) and project file
ExportConfiguration expConfig = new ExportConfiguration(LlExportTarget.Pdf, "<Target filename with
path>", "<Project filename with path>");

// Show result
expConfig.ShowResult = true;

// Start export
LL.Export(expConfig);
LL.Dispose();

Many other options can be set using the ExportOptions enumeration of the ListLabel component.

Restriction of Export Formats

If only specific export formats should be available for the end user, the list of formats can be restricted exactly to
these formats. This is possible with the option LIOptionString.Exports_Allowed. A list of all available formats can
be found in section "Export".

ListLabel LL = new ListLabel();
LL.DataSource = CreateDataSet();

// Only allow PDF and preview
LL.Core.L1SetOptionString(L1OptionString.Exports_Allowed, "PDF;PRV");

// Print

LL.Print();
LL.Dispose();

31

https://github.com/combit/NETDataProviders

Programming With .NET Examples

2.5.10 Extend Designer by Custom Function

The following example shows how a function can be added that allows querying a registry key within a report. The
result of the function could be used in appearance conditions for objects for example. Of course, the properties of
the DesignerFunction class can also be set directly in the properties window of the development environment.

ListLabel LL = new ListLabel();
LL.DataSource = CreateDataSet();

// Initialize function

DesignerFunction RegQuery = new DesignerFunction();

RegQuery.FunctionName = "RegQuery";

RegQuery.GroupName = "Registry";

RegQuery.MinimalParameters = 1;

RegQuery.MaximumParameters = 1;

RegQuery.ResultType = LlParamType.String;

RegQuery.EvaluateFunction += new EvaluateFunctionHandler(RegQuery_EvaluateFunction);

// Add function
LL.DesignerFunctions.Add(RegQuery);

LL.Design();
LL.Dispose();

void RegQuery_EvaluateFunction(object sender, EvaluateFunctionEventArgs e)

// Get registry key
RegistryKey key = Registry.CurrentUser.OpenSubKey(@"Software\combit\");
e.ResultValue = key.GetValue(e.Parameterl.ToString()).ToString();

2.5.11 Join and Convert Preview Files

The preview format can be used as the output format if, for example, multiple reports should be joined to one or
if archiving the output in the form of a PDF is desired in addition to the direct output. The following example shows
some options of the PreviewFile class.

// Open preview files, first file/coversheet with write access
PreviewFile cover = new PreviewFile(@"<Path>\frontpage.ll", false);
PreviewFile report = new PreviewFile(@"<Path>\report.1l1l", true);

// Append report to first file/coversheet
cover.Append(report);

// Print complete report
cover.Print();

// Convert report to PDF
cover.ConvertTo(@"<Path>\report.pdf");

// Release preview files
report.Dispose();
cover.Dispose();

2.5.12 Sending E-Mail

Sending e-Mail can also be controlled via the list of export options (see section "Export Without User Interaction")
if export and sending should be done in one step. An example showing that is the "Export Sample".

However, independent of the previous export, it is also possible to send any files via e-Mail by using the MailJob
class. This is especially interesting when generating a PDF file from the preview file as a source (see section "Join
and Convert Preview Files") and the PDF file is supposed to be sent via e-mail.

// Instantiate mail job
MailJob mailJob = new MailJob();

// Set options
mailJob.AttachmentList.Add(@"<Path>\report.pdf");
mailJob.To = "info@combit.net";

maillob.Subject = "Here is the report";
mailJob.Body = "Please note the attachment.";

32

Programming With .NET Examples

mailJob.Provider = "XMAPI";
maillob.ShowDialog = true;

// Send e-Mail
mailJob.Send();
mailJob.Dispose();

2.5.13 Store Project Files in a Database

Project files can also be stored in a database. Besides the option to unpack these directly from the database and
to store them in the local file system, this job can be passed to List & Label as well. The Print and Design methods
have both overloads that allow passing a stream directly.

When using these overloads, a few important changes in how these methods work are to be obeyed. The
background for these changes is the missing local file context and therefore the missing possibility to create new
files:

e It is not possible to create a new project in the Designer

e The menu items File > Save as and File > Open are not available
e Project includes are deactivated

e Drilldown is not available

e The Designer function "ProjectPath$” is not available

In the case of designing it can happen of course that the passed stream is being modified. In this case you have
to write the updated stream into the database after designing.

However, the use of the repository mode is a more elaborate approach - without any restrictions in the Designer.
The basic structure and references to sample implementations can be found in chapter "Repository Mode for
Distributed (Web) Applications'".

ListLabel LL = new ListLabel();

LL.DataSource = CreateDataSet();

byte[] report = GetReportFromDatabase();
MemoryStream memStream = new MemoryStream(report);

LL.Print(L1Project.List, memStream);
LL.Dispose();

2.5.14 Network Printing
When printing in the network, keep the following two points in mind:

e Preview files are usually created in the same directory as the project file by the name of the project file and
the extension "LL". If two users want to print the same file to preview, the second user receives an error
message. This can be avoided by setting L/PreviewSetTempPath() (see example below).

e The same applies for printer settings files. These also will — with the currently selected extension — be
searched for or created in the directory of the project file. L/SetPrinterDefaultsDir() should be used here. This
setting is of particular importance if the available printers vary from workstation to workstation. That's one
of the reasons why you shouldn't redistribute printer settings files to your users.

ListLabel LL = new ListLabel();
LL.DataSource = CreateDataSet();

// Set local temporary path
LL.Core.L1PreviewSetTempPath(Path.GetTempPath());

// Printer settings should be created in user-specific sub directory
// so changes will be stored permanently
LL.Core.L1SetPrinterDefaultsDir(<Path>);

LL.Print();
LL.Dispose();

Using the stream overloads of the Print and Design methods is an alternative here. These, for example,
"automatically” take care of storing the printer settings in the passed stream. Hints as well as an example can be
found in section "Store Project Files in a Database".

33

Programming With the VCL Component Integration of the Component

3. Programming With the VCL Component

For VCL programming, several components are available for integration into the Embarcadero IDE. The following
chapter refers exclusively to working with VCL and can be skipped if you do not work with VCL. In parallel, there
are separate chapters for programming with .NET, the OCX component or directly via API.

3.1 Integration of the Component

3.1.1 FireDAC Component
Note: At least Embarcadero RAD Studio 10.3 Rio is required to use the new FireDAC component.

For the integration of the FireDAC component, a package is available in your in-stallation directory under
"Examples\Delphi\FireDAC\Component\".

The new FireDAC component, which uses the List & Label Data Provider Interface and FireDAC as its core, enables
the use of the following features that are not available in the BDE (legacy) component:

e Multiple report containers

o Nested tables

e Data-bound report parameters

e Expandable areas in tables and crosstabs
e Interactive sorting in table headers

Assignment of the Data Source
The data source is assigned directly in the IDE via the DataController dialog:

Object Inspector
ListLabel TListlabel

Properties Events 0
ConvertCRLF True
DataController (TLLDataController)
Autobasterblode mmbsFields .
Databember d | Lc'j| X

% - Orders [DataSourceOrders]

DataSource DataSourceOrders .
i Order Details [DataSourceOrderDetails]

DetailSources (TDetailSourcelist)|

Calling the Design or Print Method

ListLabel.DataController.AutoMasterMode := TL1AutoMasterMode.mmAsVariables;
ListLabel.DataController.DataMember :='Bestellungen';
ListLabel.AutoProjectFile :='inv_merg.lst';

ListLabel.Design;

The current FireDAC component is based on the .NET component, for more information see the .NET help
(combit.ListLabel31.chm).

3.1.2 BDE Component

The integration takes place with the help of a package. For each of the following Delphi versions a package is
available in your List & Label installation directory under "Samples\Delphi\BDE (LegacyNComponent\":

RAD Studio XE5 and higher: ListLabel31.dpk
RAD Studio lower XEb: ListLabel31PreDelphiXE5.dpk
After installing the package, several icons are automatically created in the component area of the toolbar.

Now you can begin customizing List & Label to suit your needs by configuring the available properties and
implementing the required programming logic. There are three different ways to do this:

e Data binding
e The simple print and design methods
e A separate, iterative print loop

The first two options are described below. The iterative approach is for the most part the same as the direct use
of the DLL and is thus covered by the general description of the List & Label API.

34

Programming With the VCL Component Data Binding

3.2 Data Binding

An extra control exists for data binding using the List & Label VCL component. This control inherits all of the
properties from the "normal" component and adds options for direct data binding. Using the DataSource property,
you can now specify a data source of the type TDataSource.

3.2.1 Binding List & Label to a Data Source

The data binding is performed with the DataSource property. You can either program in the assignment of these
or use the Properties window in your IDE. If you have already created a DataSource in your form, you can select it
from the Properties window. The necessary link is created automatically.

You can now implement the program code for starting the design and print. To do this, you can, for example,
include the Print or Design method call in the Click event of a new button, without any additional parameters. The
data from the assigned source can be made available automatically.

// Show Designer
DBL31_1.AutoDesign('Invoice');

// Execute print
DBL31_1.AutoPrint('Invoice’,"'");

If you want to modify the standard flow of data-bound printing, there are several properties you can use. These
begin with "Auto..." and are found in the data section of the Properties window.

Property Description

AutoProjectFile File name of the print project being used

AutoDestination Print format, for example printer, preview, PDF, HTML etc.
AutoProjectType Type of print project (list, index cards, label)
AutoFileAlsoNew Creating a new project when opening Designer enabled

AutoShowPrintOptions Show print options when starting print
AutoShowSelectFile Show the file selection dialog for printing and Designer

AutoBoxType Type of progress box

3.2.2 Working With Master Detail Records

In conjunction with data binding and list projects, List & Label can automatically analyze and transfer relationships
existing between multiple tables.

The type of data transfer is defined using the AutoMasterMode property. The underlying enumeration provides for
the following values:

e None: No master-detail relations are analyzed.

e AsFields: Master and detail data are registered in parallel as fields. This makes it possible to realize groups,
statistics and overviews.

e AsVariables: The master data is registered in the form of variables and the detail data in the form of fields,
respectively. After each master data set, the project is reset internally with L/PrintResetProjectState(). This
makes it possible to use a single print job for printing in a row several identical reports containing different
data, for example, multiple invoices.

Please also note the examples included for data binding.

3.2.3 Additional Options for Data Binding
There are different events you can use for influencing the process for data binding of the component. The table
provides an overview:

Event Description

AutoDefineNewPage The event is invoked for each new page and allows
additional variables to be registered for this page. The
property IsDesignMode of the event arguments indicates
whether design mode is being used.

AutoDefineNewline This event is invoked for each new line, before the data-
bound fields are registered automatically. In the same

35

Programming With the VCL Component

Simple Print and Design Methods

AutoDefineVariable

AutoDefineField
AutoDefineTable

AutoDefineTableSortOrder

AutoDefineTableRelation

was as you do with AutoDefineNewPage, you can
register additional fields here.

This event is invoked for each variable that is
automatically created using data binding. Using the
Name and Value properties of the event arguments, you
can manipulate the names and content of each individual
variable before passing it for printing.

Analogous to AutoDefineVariable for fields
This event is invoked for each table that has been
registered via LIDbAddTable(). You can suppress passing.

This event is invoked for each sort order that has been
registered via LIDbAddTableSortOrder(). You can
suppress passing.

This event is invoked for each DataRelation that has been
registered via LIDbAddTableRelation(). You can suppress
passing.

Please note that when using these events, you must cast the sender object to the respective component types
if you want to work with the triggering component instance. Otherwise, you may encounter problems with
DrillDown or the preview in the Designer.

Example:

procedure TForml.DBL31_1AutoDefineNewPage(Sender: TObject;

IsDesignMode: Boolean);
begin

(sender as TDBL31_).L1lDefineVariable('MyCustomVariableName"',

end;

3.3 Simple Print and Design Methods

3.3.1 Working Principle

'MyCustomVariableValue');

The methods implement a standardized print loop that can be used directly for most of the simpler applications if
you do not pass the data via DataBinding. In the case of this method, the data is passed within the events
DefineVariables and DefineFields to List & Label. This allows any data source to be connected individually. The
event arguments allow access to useful information such as user data that has been copied, the Design mode etc.
The property /sLastRecord is used to notify the print loop that the last data record has been reached. As long as
this is not the case, each event is invoked repeatedly in order to retrieve the data.

The Design method shows the Designer in a modal pop-up window on top of your application window.

You can specify additional options in the LLSetPrintOptions event. Internally, this event is triggered after invoking
LIPrintWithBoxStart() but before the actual printing.

One very simple implementation of the Print method looks like this:

Delphi:

procedure TForml.LLDefineVariables(Sender: TObject; UserData: Integer;
IsDesignMode: Boolean; var Percentage: Integer;
var IsLastRecord: Boolean; var EventResult: Integer);

var
i: integer;
begin

For i:= @ to (DataSource.FieldCount-1) do

begin

LL.L1DefineVariableFromTField(DataSource.Fields[i]);

end;

if not IsDesignMode then

begin

Percentage:=Round(DataSource.RecNo/DataSource.RecordCount*100);

DataSource.Next;

if DataSource.EOF=True then IsLastRecord:=true;

end;

36

Programming With the VCL Component Transferring Unbound Variables and Fields

end;

3.3.2 Using the UserData Parameter

The Print and Design methods allow a UserData parameter of the type "integer" to be passed. This parameter makes
it possible to prepare various data in the event for List & Label. For example, using the parameter, it would be
possible to provide data for invoice printing as well as for a list of customers.

3.4 Transferring Unbound Variables and Fields

Transferring variables and fields follows the regular List & Label principle. Three "API variations" can be used for the
registration.

API Description
LIDefineVariable() Defines a variable of the type LL_TEXT and its content.
LIDefineVariable Ext() As described above; additionally can be transferred along

with the List & Label data type.
LIDefineVariableExtHandle() = As described above, except that the content must now be

a handle.
One example in which a "text" type variable is registered looks like this:

LL.L1DefineVariableExt('MyVariable', 'Content', LL_TEXT);

You can find the constants for the List & Label data types in the cmbtll31.pas unit located in your List & Label
installation directory.

3.4.1 Pictures
To transfer pictures files saved on your system, use

LL.L1DefineVariableExt ('Picture', <data path>, LL_DRAWING);

Graphics in the memory (only for BMP, EMF) are transferred with the APl LIDefineVariableExtHandle(). For example,
to display the graphic as a bitmap or metafile, use the following call:

LL.L1DefineVariableExtHandle('Picture', BufferImage.picture.bitmap.handle, LL_DRAWING_HBITMAP);

or

LL.L1DefineVariableExtHandle('Picture', BufferImage.picture.metafile.handle, LL_DRAWING_HEMETA);

3.4.2 Barcodes

Barcodes are transferred by using the constant LL BARCODE.... One example in which an EAN13-type barcode
variable is registered looks like this:

LL.L1DefineVariableExt('EAN13"', '123456789012',LL_BARCODE_EAN13);

3.5 Language Selection

The List & Label Designer can be displayed in several languages (depending on the edition). Thus, the component
provides full-scale support in the implementation of multilingual desktop applications. There are two ways for
telling List & Label which language to use:

1. Assigning the Language property the appropriate language:

LL.Language = ltEnglish;

2. Set the language directly in the component.

37

Programming With the VCL Component Working With Events

3.6 Working With Events

List & Label offers a variety of callbacks, which have been implemented as events in the List & Label VCL
component.

For a detailed description of the available events, please refer the online help included with the VCL component.

3.7 Displaying a Preview File

An extra control exists for displaying a preview file using the List & Label VCL component. This provides special
ways to use the List & Label preview format. For example, you can start a PDF export from the control. You can
also customize the control to meet your specific needs by displaying/hiding the toolbar buttons with the properties
of the control. It is also possible to respond to the click events of the buttons and store any separate handling
routines that may be necessary.

3.8 Working With Preview Files

The List & Label Storage APl allows access to the LL preview files. You can query general information or the specific
pages, merge several files and save user data. To use the Storage API, you have to integrate the unit cmbtls31.pas
into your project.

3.8.1 Opening a Preview File

You can open the preview file with the L/StgsysStorageOpen() function. General information about the file can now
be accessed using a whole series of other functions.

Delphi:

var
hStg: HLLSTG;
begin
hStg := L1StgsysStorageOpen('c:\test.11','',False, False)
end;

3.8.2 Merging Multiple Preview Files

You can merge multiple preview files. To do this, you must first open the target file. Since write access is required,
you must pass a "false" value for the second parameter, ReadOnly. Using the LIStgSysAppend() function you can
then merge the files.

Delphi:

var
hStgOrg, hStgAppend: HLLSTG;

begin
hStgOrg := L1StgsysStorageOpen('c:\testl.11','',False, True);
hStgAppend := L1StgsysStorageOpen('c:\test2.11','',False, True);
L1StgsysAppend(hStgOrg, hStgAppend);
L1StgsysStorageClose(hStgorg);
L1StgsysStorageClose(hStgAppend);

end;

3.8.3 Debugging

The debugging of the VCL component allows you to either directly activate the component by setting the property
DebugMode to "1" or alternatively in the source code. For example:

LL.DebugMode := LL_DEBUG_CMBTLL;

For more information about the Debwin debugging tool, please refer to the chapter "Debug Tool Debwin".

3.9 Extending the Designer

List & Label offers a variety of options for extending the Designer. These include, among other things, the various
events of the component such as a menu operation and the various features that are available. Yet there are
numerous other possibilities.

38

Programming With the VCL Component

Extending the Designer

3.9.1 Using the Formula Wizard to Add Your Own Functions
The formula wizard and its features are among the most important and powerful capabilities of the Designer. Using

a special List & Label VCL component, you can also integrate fully customized functions into the Designer.

To add a new function, insert this component on a form in the development environment. You can now set the
necessary parameters in the Properties window of this component:

!]
RomanNumber j
Properties | Events
El|Action
Visible true
HiLinkage
ParentComponent LL
EMiscellaneous
Description Returns the roman equivalent
FunctionMame RomanNumber
GroupMarne cample Functions
MaximumParameters |1
MinirumParameters 1
¥ |Mame Romanturnber
Parameterl {TLI1 3XFunctionParameter)
Parameterz {TLI1 3%FunctionParameter)
Parameter3 (TLI13XFunctionParameter)
Parameterd {TLI13XFunctionParameter}
ResultType ptall
Tag u]
El¥isual
Yisible true
All shown
Property Description
Name The unique name of the designer function.
Description An additional description of the function for the formula wizard.
GroupName The group in which the function is displayed in the formula
wizard.
Visible Indicates whether or not the function will be displayed in the

MinimumParameters

MaximumParameters

Parameter1 -4

Type
Description
ResultType

wizard.

The minimum number of parameters. Permissible values
between 0 and 4.

The maximum number of parameters. Here too, permissible
values between 0 and 4. The value must be equal to or greater
than the minimum number. Increasing the number results in
optional parameters.

The configuration for each of the four parameters can be
customized.

The data type of the parameter.
A description of the parameter for the tooltip help in Designer.
The data type of the return value.

Using the properties, you can customize the configuration of the new Designer function. In order to bring the
function to life, you have to handle the event OnEvaluateFunction. Using the event arguments, you gain access to

the parameters entered by the user. For example, to return the Roman numeral, use the following lines:

Delphi:

procedure TDesExtForm.RomanNumberEvaluateFunction(Sender: TObject;
var ResultType: TL131XFunctionParameterType;
var ResultValue: OleVariant;
var DecimalPositions: Integer; const ParameterCount: Integer;
const Parameterl, Parameter2, Parameter3, Parameter4: OleVariant);

begin

ResultValue:=ToRoman(Parameterl);

end;

Two additional events also give you the option to further modify the function. OnCheckFunctionSyntax lets you
perform a syntax check. Here you can check the data types of the parameters and, for example, make sure the

39

Programming With the VCL Component Extending the Designer

parameters fall within a certain range. Using OnParameterAutoComplete you can define several suggested values
for the AutoComplete feature of the formula wizard.

3.9.2 Adding Your Own Objects to the Designer

Similar to the way you add functions to Designer, you can also define your own object types and register them in
List & Label. The user can access the new objects in the usual way on the left toolbar and menu.

Here there is also a special component for adding objects:

[X

GradientFillobject |

Properties [Events
El|action

Hink
El|Help and Hints

Hink
HiLinkage
ParentComponent LL
Popupfenu PopupMenul
E|Localizable

Hink
¥ |Icon (TIcon) J
ElMiscellaneous

Description GradientFill

Mame GradientFillobject

OhjectMame GradientFill

SupportsMultipage false

Tag 1]
E¥isual

Icon (TIcon)
All shown

After adding this component to your form, you can define the properties of the new object in the Properties window
of the component. The table provides an overview:

Property Description
Name The unigue name of the object.
Description This description appears in the Designer. It is allowed to contain

spaces but should not be more than 30 characters long.

Icon The icon of the object that will be shown in the toolbar and menu
in the Designer. It should be a 16x16 pixel icon.

The component has three types of events. First, the On/nitialCreation event is triggered when the user creates a
new object. If desired, you can have an initial dialog appear on the user's screen. For example, this can be a wizard
that helps the user to more easily configure the new object. If it is not necessary to use this in a particular case,
simply skip handling the event.

The following lines initialize the object as soon as the new object is placed on the workspace for the first time.
Delphi:

procedure TDesExtForm.GradientFillObjectInitialCreation(Sender: TObject;
ParentHandle: Cardinal);

begin
with Sender as TL131XObject do
begin
Properties.AddProperty(‘Colorl', '255');
Properties.AddProperty('Color2', '65280');
end;
end;

The OnEdit event is triggered when the user double-clicks the newly inserted object or selects "Properties" from
the context menu.

After you are finished editing the object, you are prompted by List & Label to show the object. The OnDraw event
is triggered for this purpose. The event arguments are responsible for generating the 7Canvas as well as a TRect
for the object. Using the usual methods, you can now draw in the workspace. Here, of course, it is also possible
or useful to access the stored object properties.

40

Programming With the OCX Component Integration of the Component

4. Programming With the OCX Component

For OCX programming, several components are available for integration into your IDE. The following chapter refers
exclusively to working with OCX and can be skipped if you do not work with OCX. In parallel, there are separate
chapters for programming with .NET, the VCL component or directly via API.

Important: Note that ActiveX technology for OCX controls is now considered obsolete. Browsers generally no
longer support the controls for security reasons, and most development environments no longer support
ActiveX controls. We strongly recommend switching to a more up-to-date technology. The OCX controls in List
& Label will be removed in one of the upcoming versions. If you have any questions about this, please feel free
to contact us at info@combit.com.

4.1 Integration of the Component

The component is integrated by using the cmll310.ocx file containing the control. This file is located in the
"Redistribution" directory. For more information on how to install the OCX in your IDE, refer to the online help
documentation for your development environment.

After integrating the control, an icon should appear automatically in the component area of the toolbar or toolbox
of your IDE.

Now you can begin customizing List & Label to suit your needs by configuring the available properties and
implementing the required programming logic. There are two different ways to do this:

e The simple print and design methods
e A separate, iterative print loop

The first option is described below. The iterative approach is for the most part the same as the direct use of the
DLL and is thus covered by the general description of the List & Label API.

4.2 Simple Print and Design Methods
4.2.1 Working Principle

The print and design methods of the OCX Control implement a standardized print loop, which can be used directly
with most of the simple applications (applications working with only one table). To print multiple tables, a separate
print loop is used (see chapter "Printing Relational Data"). In the case of this method, the data is passed within the
events CmndDefineVariables and CmndDefineFields to List & Label. This allows any data source to be connected
individually. The event arguments allow access to useful information such as user data that has been copied, the
Design mode etc. The property pblLastRecord is used to notify the print loop that the last data record has been
reached. As long as this is not the case, each event is invoked repeatedly in order to retrieve the data.

The Design method shows the Designer in a modal pop-up window on top of your application window.

You can specify additional options in the CmndSetPrintOptions event. Internally, this event is triggered after
invoking L/PrintWithBoxStart() but before the actual printing.

One very simple implementation of the print method looks like this:

Private Sub ListlLabell_CmndDefineVariables(ByVal nUserData As Long, ByVal bDummy As Long,
pnProgressInPerc As Long, pbLastRecord As Long)

Dim i As Integer
For i = @ To Recordset.Fields.Count - 1

Select Recordset.Fields(i).Type

Case 3, 4, 6, 7: para = LL_NUMERIC: content$ = Recordset.Fields(i)

Case 8: para = LL_DATE_MS: a! = CDate(Recordset.Fields(i)): content$ = a!:
Case 1: para = LL_BOOLEAN: content$ = Recordset.Fields(i)

Case Else: para = LL_TEXT: content$ = Recordset.Fields(i)

End Select

nRet = LL.L1DefineVariableExt(Recordset.Fields(i).Name, content$, para)
Next i

If bDummy = @ Then
pnProgressInPerc = Forml.Datal.Recordset.PercentPosition
Recordset.MoveNext

End If

41

Programming With the OCX Component Transferring Unbound Variables and Fields

End Sub

4.2.2 Using the UserData Parameter

The Print and Design methods allow a UserData parameter of the type "integer" to be passed. This parameter makes
it possible to prepare various data in the event for List & Label. For example, using the parameter, it would be
possible to provide data for invoice printing as well as for a list of customers.

4.3 Transferring Unbound Variables and Fields

Transferring variables and fields follows the regular List & Label principle. There are three "API variations" available
for the registration.

API Description
LIDefineVariable Defines a variable of the type LL_TEXT and its content.
LIDefineVariableExt As described above; additionally can be transferred along

with the List & Label data type.
LIDefineVariableExtHandle | As described above, except that the content must now be

a handle.
One example in which a "text" type variable is registered looks like this:

LL.L1DefineVariableExt("MyVariable", "Content", LL_TEXT)

You can find the constants for the List & Label data types in the cmlI31.bas (VB) unit located in your List & Label
installation directory.

4.3.1 Pictures

To transfer picture files saved on your system, use

LL.L1DefineVariableExt ("Picture", <file path>, LL_DRAWING)

Graphics are transferred using the "API variation" L/DefineVariableExtHandle(). For more information about this
function, refer to chapter "API Reference".

4.3.2 Barcodes

Barcodes are transferred by using the constant LL BARCODE.... One example in which an EAN13-type barcode
variable is registered looks like this:

LL.L1DefineVariableExt('EAN13', '123456789012',LL_BARCODE_EAN13);

4.4 Language Selection

The List & Label Designer can be displayed in several languages (depending on the edition). Thus, the component
provides full-scale support in the implementation of multilingual desktop applications. There are two ways for
telling List & Label which language to use.

e Assigning the "Language" property the appropriate language:

LL.Language = CMBTLANG_ENGLISH

e Set the language directly in the component.

4.5 Working With Events

List & Label offers a variety of callbacks, which have been implemented as events in the List & Label OCX
component.

4.6 Displaying a Preview File

A separate component exists for displaying previews. To use this component, you must include the file cmll31v.ocx
in your IDE. The component offers special ways to use the List & Label preview format. For example, you can start

42

Programming With the OCX Component Working With Preview Files

a PDF export from the control. You can also customize the control to meet your specific needs by displaying/hiding
the toolbar buttons with the properties of the control. Itis also possible to respond to the click events of the buttons
and store any separate handling routines that may be necessary.

4.7 Working With Preview Files

The List & Label Storage APl allows access to the LL preview files. You can query general information or the specific
pages, merge several files and save user data. To use the Storage API, you must include the Unit cmlIs31.bas in
your project or invoke the functions from the OCX Control.

4.7.1 Opening a Preview File

You can open the preview file with the L/StgsysStorageOpen() function. General information about the file can now
be accessed using a whole series of other functions.

Visual Basic:

Dim hStgOrg As Long

hStgOrg = LL.L1StgsysStorageOpen("C:\Test.11", "", False, True)

4.7.2 Merging Multiple Preview Files

You can merge multiple preview files. To do this, you must first open the target file. Since write access is required,
you must pass a "false" value for the second parameter, ReadOnly. Using the L/StgSysAppend|() function you can
then merge the files.

Visual Basic:

Dim hStgOrg As Long
Dim hStgAppend As Long

hStgOrg = LL.L1StgsysStorageOpen("C:\Test1.11", "", False, True)
hStgAppend = LL.L1StgsysStorageOpen("C:\Test2.11", "", False, True)

LL.L1StgsysAppend hStgOrg, hStgAppend

LL.L1StgsysStorageClose hStgOrg
LL.L1StgsysStorageClose hStgAppend

4.7.3 Debugging
You can enable debugging for the OCX component by setting the DebugMode property in the source code to "1",
e.g.:

LL.L1SetDebug = 1

For more information about the Debwin debugging tool, please refer to the chapter "Debug Tool Debwin".

4.8 Extending the Designer

List & Label offers a variety of options for extending the Designer. These include, among other things, the various
events of the component such as a menu operation and the various features that are available. Yet there are
numerous other possibilities...

4.8.1 Using the Formula Wizard to Add Your Own Functions

The formula wizard and its features are among the most important and powerful capabilities of the Designer. Using
a special List & Label component for the OCX, you can also integrate fully customized functions into the Designer.
To use the control, you must include the file cmlli31fx.ocx in your IDE.

To add a new function, insert this component on a form at the time of design. You can now set the necessary
parameters in the Properties window of this component.

Property Description

Name The unigue name of the designer function.

43

Programming With the OCX Component Extending the Designer

Description An additional description of the function for the formula wizard.

GroupName The group in which the function is displayed in the formula
wizard.

Visible Indicates whether or not the function will be displayed in the
wizard.

MinimumParameters | The minimum number of parameters. Permissible values
between 0 and 4.

MaximumParameters | The maximum number of parameters. Here too, permissible
values between 0 and 4. The value must be equal to or greater
than the minimum number. Increasing the number results in
optional parameters.

ResultType The data type of the return value.

Using the properties, you can customize the configuration of the new Designer function. The parameters for the
design functions are defined in the source code. This may look as follows:

Visual Basic:

Private Sub InitializeDesFunction()
Dim paraml As DesignerFunctionsParameter
Dim param2 As DesignerFunctionsParameter

Set paraml = DesFunc_Add.Parameterl
paraml.Description = "First Value"
paraml.Type = L1ParamType.ParamType_Double

Set param2 = DesFunc_Add.Parameter2
param2.Description = "Second Value"
param2.Type = L1ParamType.ParamType_Double

DesFunc_Add.ParentComponent = ListlLabell
End Sub

In order to bring the function to life, you have to handle the event DesFunc_Add_EvaluateFunction. Using the event
arguments, you gain access to the parameters entered by the user. For example, to return the sum of the two
parameters, use the following lines:

Visual Basic:

Private Sub DesFunc_Add_EvaluateFunction(ResultValue As Variant,
ResultType As CMLL31FXLibCtl.L1lParamType,
DecimalPositions As Long,

ByVal Parameters As Long, ByVal Parameterl As Variant,
ByVal Parameter2 As Variant, ByVal Parameter3 As Variant,
ByVal Parameter4 As Variant)

ResultValue = CDbl(Parameterl) + CDbl(Parameter2)
ResultType = ParamType_Double

End Sub

Two additional events also give you the option to further modify the function. DesFunc_Add_CheckFunctionSyntax
lets you perform a syntax check. Here you can check the data types of the parameters and, for example, make
sure the parameters fall within a certain range. DesFunc_Add_ParameterAutoComplete allows you to define several
suggested values for the AutoComplete feature of the formula wizard.

4.8.2 Adding Your Own Objects to the Designer

Similar to the way you add functions to the Designer, you can also define your own object types and register them
in List & Label. The user can access the new objects in the usual way on the left toolbar and menu.

Here there is also a special component for adding objects. To use this, you must include the file cmll31ox.ocx in
your IDE.

After adding this component to your form, you can define the properties of the new object in the Properties window
of the component.

The table provides an overview:
Property Description

44

Programming With the OCX Component The Viewer OCX Control

Name The unigue name of the object.

Description This description appears in the Designer. It is allowed to contain
spaces but should not be more than 30 characters long.

Icon The icon of the object that will be shown in the toolbar and menu
in Designer. It should be a 16x16 pixel, 16-color icon.

The component has three types of events. First, the DesObj Picture CreateDesignerObject event is triggered
when the user creates a new object. If desired, you can have an initial dialog appear on the user's screen. For
example, this can be a wizard that helps the user to more easily configure the new object. If it is not necessary to
use this in a particular case, simply skip handling the event.

The DesObj Picture EditDesignerObject event is triggered when the user double-clicks the newly inserted object
or selects "Properties" from the context menu.

After you are finished editing the object, you are prompted by List & Label to show the object. The
DesObj_Picture_DrawDesignerObject event is triggered for this purpose. Using the usual methods, you can now
draw in the workspace. Here, of course, it is also possible or useful to access the stored object properties.

4.9 The Viewer OCX Control

4.9.1 Overview
The CMLL31V.OCX control can be used to view, export or print List & Label preview files in your own environment.

It can, for example, be inserted into your own application or into an Internet page.

When printing, the projects will be fitted into the page, automatically taking account of the "physical page" flag and
the page orientation to create the best possible printout result.

If a URL is given instead of a file name, the control will try to load the file into a temporary cache on the local hard
disk if the URLMON.DLL is registered on the system, see below.

Please note, that a browser is required that supports ActiveX Controls, for example MS Internet Explorer.

4.9.2 Registration

The control can be registered in the usual way, for example with the command "REGSVR32 CMLL31V.OCX", by the
programming environment or by your setup program. It cannot be used without registration. For further
information, please refer to the file Redist.txt in your List & Label installation directory.

4.9.3 Properties

AsyncDownload [in, out] BOOL: This is an option to improve the screen update. If the download is not
asynchronous, then the screen around the OCX will not be updated until the download is finished. On the other
hand, you must be careful with the async download, as you might not be able to set properties like "Page" until the
download is finished (see event LoadFinished). After setting this option, read the value again to check whether this
feature is supported. This has no effect on local files. Default: FALSE

Enabled [in, out] BOOL: Defines whether the control is enabled or disabled. This will have an effect on the user
interface. Default: TRUE

BackColor [in, out] OLE_COLOR: Defines the background color, i.e. the color that is painted on:
* the whole background if no preview file can be displayed, and

* the background outside the paper. Default: RGB(192, 192, 192) [light gray]

FileURL [in, out] BSTR: The most important property. Defines the name of the preview file. This can be a file name
as well as a URL. Default: <empty>

Pages [out] Long: The total number of pages in the preview
CurrentPage [in, out] Long: Sets or reads the current page index (1..pages). Default: 1

ToolbarEnabled [in, out] BOOL: Defines whether the toolbar should be displayed. The toolbar is not necessary,
as all of its functions can be called by methods (as an example, see LLVIEW31.EXE and its menu items). So there
is no problem at all in defining your own toolbar. Default: TRUE

ToolbarButtons [out] LPDISPATCH: Returns a ToolbarButtons object that can be used to get or set the status of
each toolbar button. The object has the following methods:

45

Programming With the OCX Component The Viewer OCX Control

e GetButtonState([in] nButtonID) LONG Returns the button state for the passed TLB: constant.

Value Meaning Constant
-1 Hidden TLBS PRV _HIDE
0 Default TLBS PRV _DEFAULT
Enabled TLBS PRV _ENABLED
2 Disabled TLBS PRV _DISABLED
Example:

Dim oTlb as ToolbarButtons
Set oTlb = L1ViewCtrll.ToolbarButtons
MsgBox oT1lb.GetButtonState(TLB_PRV_FILEEXIT)

e SetButtonState([in] nButtonlD, [in] nButtonState) Sets the button state for the passed TLB_ constant.
See above for valid state values.

Example:

Dim oTlb as ToolbarButtons
Set oTlb = L1lViewCtrll.ToolbarButtons
oTlb.SetButtonState TLB_PRV_FILEEXIT, TLBS_PRV_HIDE
You can find the corresponding IDs in the "MenulD.txt" file in your List & Label installation.

ShowThumbnailsfin, out] BOOL: Defines whether the thumbnail bar is visible in the preview control. Default:
TRUE

SaveAsFilePath [in, out] BSTR: Defines the default path for the "Save as..." dialog. When using the SaveAs method
the user-defined file name will be returned.

CanClose[out] BOOL: Must be used to query the state of the control before closing the hosting form/page. If the
result is FALSE, the control must not be destroyed.

Version [out] LONG: Returns the version number of the OCX control (MAKELONG(lo,hi)).

494 Methods
GotoFirst: Shows the first page

GotoPrev: Shows the previous page (if possible)
GotoNext: Shows the next page (if possible)
Gotolast: Shows the last page

ZoomTimes2: Zooms in with a factor of 2

ZoomRevert: Resets to the previous zoom state (the zoom states are on a stack, where ZoomRevert pops the last
one off before resizing to that zoom state).

ZoomReset: Resets the zoom state to 'fit to client window".
SetZoom ([in] long nPercentage) : Sets the zoom to the passed factor (1-30). Use the factor -100 for page width.

PrintPage ([in] Long nPage, [in] Long hDC): Prints the page (nPage = 1..page). If hDC is NULL, a printer dialog
will be shown.

PrintCurrentPage ([in] Long hDC): Prints the current page. If hDC is NULL, a printer dialog will be shown.

PrintAllPages ([in] BOOL bShowPrintOptions): Prints all pages of the project. If bShowPrintOptions is TRUE, a
printer dialog will be shown.

RefreshToolbar: Refreshes the toolbar
SendTo: Starts "Send"
SaveAs: Starts "Save As"

GetOptionString([in] BSTR sOption) BSTR: Returns mail settings. See the chapter on project parameters for
more information. The available options are documented in chapter "Send Export Results via E-Mail".

46

Programming With the OCX Component The Viewer OCX Control

SetOptionString([in] BSTR sOption, [in] BSTR sValue) BSTR: Sets mail settings. See the chapter on project
parameters for more information. The available options are documented in chapter "Send Export Results via E-
Mail". Additionally, the control supports the following options:

Print.NoProgressDlg: Can be used to suppress the progress dialog during printing.

Value Meaning

0 The progress dialog is displayed during printing.
1 The progress dialog is suppressed.

Default 0
495 Events

BtnPress
Syntax:
BtnPress (short nID): BOOL

Task:

Tells you that a toolbar button has been pressed.

Parameter:
niD: You can find the corresponding IDs in the "MenulD.txt" file in your List & Label installation.

Return value:
TRUE if the action should not be performed by the OCX.

PageChanged

Syntax:
PageChanged

Task:
Tells you that the current page has been changed.

Parameter:

Return value:

LoadFinished

Syntax:
LoadFinished (BOOL bSuccessful)

Task:
Notifies you that the file is on the local disk. Important in case of asynchronous download.

This does not guarantee that the downloaded file is correct - you should use the property 'pages' to check:
a value of 0 indicates a failure.

Parameter:
bSuccess: TRUE if the file has been transferred; FALSE if the download failed

Return value:

4.9.6 Visual C++ Hint

Visual C++ (at least V 5.0) notifies you with an "Assertion Failed" message in occcont.cpp that something is
incorrect. This assertion is only in the debug build and results from the ATL library we used for this control.

4.9.7 CAB Files Packaging
A CAB file is supplied with List & Label.

47

Programming With the OCX Component The Viewer OCX Control

4.9.8 Inserting the OCX Into Your Internet Page

As stated above, the control can be inserted into an Internet page. Properties can be set via <PARAM> tag or

scripts.

48

Programming Using the API Programming Interface

5. Programming Using the API

Besides reading this chapter, we recommend to have a look at the source code samples that are provided with
List & Label for various programming languages to get started quickly. You will find them in the "Samples" folder in
the List & Label start menu. Declaration files for many programming languages are additionally available in order
to ease the integration of List & Label, even if there are no samples available. In this case, a look at the samples for
other programming labguages might help to set up the neccessary code.

The source code snippets in this chapter are using C/C++ as programming languages, but the syntax should be
easily adaptable to other languages, too.

5.1 Programming Interface

5.1.1 Dynamic Link Libraries

Basics
A DLL (Dynamic Link Library) is a collection of routines in a file which is loaded on demand by the Windows kernel.
The DLL principle allows the routines (procedures) contained within it to be "bound" (linked) to the executable at

the time the application is run. Furthermore, several applications can use the DLL routines without requiring
multiple copies to be installed on the system.

Of course, procedures of one DLL can also call procedures of other DLLs, as is regularly done by Windows.

List & Label uses different DLLs for specific jobs.

Usage of a DLL

Because of this method of linking, Windows has to be able to find and load the DLL file. To be accessible, the DLL
has to be placed either in the path where the calling application is, the directory of Windows or its system path, or
in any path contained in the system search path.

The same is valid for the DLLs List & Label uses.

These DLLs must be copied into a path in which your program is installed, or which complies with the requirements
stated above.

The List & Label DLL and its dependent DLLs can be installed for Side-By-Side use in your application's directory.
See chapter "Redistribution: Shipping the Application" for further information.

Linking With Import Libraries

To use the API functions, your source code must include a declaration file for ¢?1131.dll (C++: cmbtli31.h), which
needs to be done after the "#include <windows.h>" statement resp. the precompiled header file, as Windows
data types are used in the declarations. Additionally, you need to link the corresponding LIB file (C++: c?lI31.lib).
In order to use the APl for managing preview files (see chapter "Managing Preview Files") you need to include the
declaration file for c?Is31.dll (C++: cmbtls31.h) and if neccessary link to the corresponding LIB file (C++:
c?I1s31.lib).

Dynamic loading of the DLLs is also possible — you will find a description in the article "HOWTO: Loading the List
& Label DLLs Dynamically in C/C++ and Delphi" in our knowledgebase.

Note: The ? in the above file names should be replaced with either "'m" (32-bit) or "x" (64-bit).

Important Remarks on the Function Parameters of DLLs

Returning strings from the DLL to the application is always performed by returning a pointer to a memory area and,
as a further parameter, an integer value for the length. The buffer size (in characters) must be passed so that buffer
overflows are impossible. The string is always \O-terminated. If, for example, the buffer is too short, the returned
string will be shortened and may result in incomplete return values. This is indicated by the API function's return
value. LL ERR BUFFERTOOSMALL will be returned in these cases.

The parameters are checked for correctness as far as possible. While developing a program it is therefore worth
switching on the debug mode (see L/SetDebug()) and checking the return values. You can switch off the parameter
check later using LL_OPTION_NOPARAMETERCHECK.

Please note that with Delphi the routines require "\O'-terminated strings just like the Windows API functions. It may
be necessary to use the Pascal-string to C-string conversion routines.

With Visual Basic, it may in some cases be necessary to remove the \O-termination. Parameters are passed with
ByVal. It is recommended that you initialize buffer/strings with...

49

https://forum.combit.net/t/howto-loading-the-list-label-dlls-dynamically-in-c-c-and-delphi/5044
https://forum.combit.net/t/howto-loading-the-list-label-dlls-dynamically-in-c-c-and-delphi/5044

Programming Using the API Programming Basics

Dim lpszBuffer As String * 255
to a specific size (here 255 bytes). This is also possible using...

lpszBuffer$ = space$ (255)
but requires more time and memory. It is important to reserve the memory so that the DLL does not write in unused
areas - an unhandled exception would be the result otherwise.

In addition, it must be noted that some functions cannot be supported with Visual Basic; these are, however, not
normally required. You can find out which functions these are in the corresponding chapters. If a parameter value
is NULL (C) or nil (Pascal), you should use " (empty string) or 0 as value in Visual Basic, depending on the data type
of the parameter. The OCX control does not need ANSIZ buffers, as it supports the native String data types.

Please note with C or C++ the C convention in source texts of having to enter, for example, the \\' in path entries
twice: "c:\\temp.lbl" instead of "c:\temp.Ibl".

Example:
INT nSize = 16000;

LPWSTR pszBuffer = new TCHAR[nSize];
INT nResult = <API>(hJob,...,pszBuffer,nSize);

if (nResult == LL_ERR_BUFFERTOOSMALL)

{
nSize = <API>(hJob,...,NULL,9);

ASSERT(nSize > 0);

delete[] pszBuffer;

pszBuffer = new TCHAR[nSize];

nResult = <API>(hJob,...,pszBuffer,nSize);
b

delete[] pszBuffer;

5.1.2 General Notes About the Return Value

e Zero (or with some functions a positive return value) generally means that the function was successful, though
there are some exceptions to this rule.

* A negative return value, apart from exceptional cases, indicates an error, which shows the reason with the
corresponding error constants.

5.2 Programming Basics

This chapter should provide a quick and easy start into programming List & Label. Thus, only the programming
basics will be covered. For a look at more advanced topics, please read the corresponding chapters later on.

5.2.1 Database Independent Concept

List & Label works database-independently when being programmed via the APIl, meaning List & Label does not
access the database itself and does not have its own database drivers. This offers you an enormous number of
advantages.

The advantages:

* No unnecessary overheads due to duplicate database drivers, resulting in less memory consumption so that
your application can run faster.

e Less risk of problems with additional database drivers.

* More flexible, as this allows data control in one place only.

¢ Can be used without any database.

* Allows access to exotic databases.

* You can mix database data and "virtual" data created by your program.
* The data can be manipulated before printing.

The disadvantage:

* You really have to write some code. List & Label needs to be fed with data. This is very simple and needs little
coding in standard cases.

50

Programming Using the API Programming Basics

5.2.2 The List & Label Job

To enable List & Label to distinguish between the different applications that are printing with it, a so-called job
management is necessary: each application using a functionality of List & Label (print, design etc.) has to open a
job first (LiJobOpen(),LIJobOpenlLCID()) and pass the returned job handle as parameter to (nearly) all following calls
of List & Label functions.

If you develop using one of the enclosed components, the job management is handled automatically by the control.
For this reason, the job handle parameter must be omitted in calls of functions of these components.

HLLJOB hJob = L1JobOpen(CMBTLANG_ENGLISH);

L1DefineVariable(hJob, "Firstname", "George");
L1DefineVariable(hJob, "Lastname", "Smith");

5.2.3 \Variables, Fields and Data Types

The delivery and definition of variables and their contents is performed with the List & Label function
LIDefineVariable(Ext)(), the delivery and definition of fields and their contents is performed with the List & Label
function L/DefineField(Ext)(). Regarding the names of fields and variables please refer to the section "Hints on Table,
Variable and Field Names".

List & Label allows the specification of the following variable and field types. As the APls expect string parameters
to be passed, you may need to convert the actual values to strings before passing them to List & Label.

Please note the hints regarding NULL values in section "The following chapter offers various hints for programming
with List & Label.

Passing NULL Values".

HLLJOB hJob = L1JobOpen(CMBTLANG_ENGLISH);

L1DefineVariable(hJob, "Firstname", "George");

L1DefineVariable(hJob, "Lastname", "Smith");

LlDefineVariableExt(hJob, "ISBN", "40|15589|97531", LL_BARCODE EAN13, NULL);
L1DefineVariableExt (hJob, "Photo", "c:\\dwg\\test.bmp", LL_DRAWING, NULL);

Text

Constant:
LL TEXT

Content e.g.:
'abcdefg"
Hints:
The text can contain special characters to handle word wraps. These characters are:

Value Meaning
LL CHAR_NEWLINE, 0x0d, Textobject. Becomes a blank, if "word
0x0a wrapping" is not activated in the Designer.

Table field: Wrap is forced:
"This will'+chr$(LL_CHAR NEWLINE) +"be

wrapped"
LL CHAR - The character is ignored, if no wrapping is
PHANTOMSPACE chosen in the Designer. In this way, other

characters can be assigned to a wrap:
"This is a word-
"+chr$(LL_ CHAR PHANTOMSPACE)+"wrap
"is wrapped when needed.

LL CHAR _LOCK Is put in front of tabs or blanks and means
that no wrapping may occur:
"Not"+chr$(LL CHAR LOCK)+" here please"

The codes of these characters can be changed with LL_OPTION xxxREPRESENTATIONCODE.

51

Programming Using the API Programming Basics

Numeric

Constant:
LL NUMERIC

Content e.g.:
'3.1415", "2.5e3"
Hint:

Exponential syntax is allowed (2.5e3 equals 2.5*103). A thousands separator (as in "1,420,000.00") is not
allowed.

Constant:
LL NUMERIC LOCALIZED

Content e.g.:
'1,255.00"
Hint:

The number is interpreted as a localized number, i.e. as a number formatted according to the local format
settings. The OLE-API VarR8FromStr() is used internally.

Constant:
LL NUMERIC INTEGER

Content e.g.:
IIII5I\II
Hint:

Provides an integer value. The usage of integer values has a better performance in calculations. They will
be displayed and printed without decimals.

Date

Constant:
LL DATE

Content e.g.:
'24511568.5" (equals 12/11/1998 noon) or "5-1-2017" for LL DATE MDY format or '20170501" for
LL DATE YYYYMMDD format

Hint:
Date values are usually expected in the Julian format. The Julian date specifies a certain date by giving the

number of days that have passed since January, 15t -4713. The decimals represent the fraction of a day,
which may be used to calculate hours, minutes and seconds.

Many programming languages also have a special data type for date values. The representation is usually
analogous to the Julian date; however, a different start day is often used. This means that in this case an
offset has to be added. To avoid this, at least for the languages Visual Basic, Visual FoxPro and Delphi, List
& Label knows the following special date variants:

LL DATE OLE, LL DATE MS, LL_DATE DELPHI! 1, LL DATE DELPHI, LL DATE VFOXPRO
To make passing dates easier, there are some formats that do not require a Julian format:
LL DATE DMY, LL DATE MDY, LL DATE YMD, LL DATE YYYYMMDD.

With these, the value of a date variable can be passed directly as a string to List & Label, there is no need
for your program to convert it to the Julian date - List & Label performs this task for you.

The day, month and year numbers must be separated by a dot (), slash (/) or minus sign () in the first
three formats.

Constant:
LL DATE LOCALIZED

Hint:
The date is interpreted as localized date, e.g. "12/31/2017". The OLE-API VarDateFromStr() is used internally.

52

Programming Using the API Programming Basics

Boolean

Constant:
LL BOOLEAN

Content e.g.:
IITII

Hint:
Y M all represent "true”, all other values represent "false'.

RTF Formatted Text

Constant:
LL RTF

Content e.g.:
"{\rtf\ansi[...]Hello {\b World}\par}"
Hint:
The variable content must start with "{\rtf" and contain RTF-formatted text.

Important: The rendering of RTF contents in variables and fields is optimized for contents created with
Microsoft's RTF control. These can be generated e.g. by using one of the supplied programming examples
with the List & Label RTF control. Contents generated by Microsoft Word may not conform to the Windows
RTF control's RTF standard and should not be used.

HTML Formatted Text

Constant:
LL HTML

Content e.g.:
"<html> <body> Hello World </body> </html|>"
Hint:

List & Label uses a custom component for HTML rendering. This component supports a restricted CSS
subset. The correct rendering of entire web pages is not the main intent — the component rather offers a
quick and easy way to render simple HTML streams.

Drawing

Constant:
LL DRAWING
Content e.g.:
"c:\temp\sunny.jpg"
Hint:

The variable content represents the name of a graphics file (C/C+ +-programmers note: use a double "\"
with path specifications)

Constant:
LL DRAWING HMETA, LL_ DRAWING HEMETA, LL_ DRAWING_HBITMAP, LL_ DRAWING _HICON
Hint:

Variable content is a handle to a graphic of the respective type in the memory (can only be defined using
LIDefineVariableExtHandle() or LIDefineFieldExtHandle())

Barcode

Constant:
LL BARCODE

53

Programming Using the API Invoking the Designer

Contents:
"Barcode Text"
Hint:

The variable contents are the text to be printed in the barcode. The format and character range of the
barcodes are described in the online help.

Constant:
All constants starting with LL_ BARCODE ...

User Object

Constant:
LL DRAWING USEROBJ, LL_ DRAWING USEROBJ DLG

Hint:

This object is drawn by the application itself in a callback/event procedure. For
LL DRAWING USEROBJ DLG the programmer can supply a custom properties dialog for the object
available in the Designer.

The use of this variable type is a more advanced topic and is described later in this manual.

5.3 Invoking the Designer
5.3.1 Basic Scheme

In pseudo code, calling the Designer is done as follows (functions marked with '*' are optional calls):

<open Job>
(L1JobOpen, L1JobOpenLCID)
<define List & Label-settings>*
(L1SetOption,
L1SetOptionString,
L1SetDebug,
L1SetFileExtensions,
L1SetNotificationMessage,
L1SetNotificationCallback)
<which file?>*
(L1SelectFileDlgTitleEx)
<define variables>
(L1DefineVariableStart,
L1DefineVariable,
L1DefineVariableExt,
L1DefineVariableExtHandle)
<define fields>* (only LL_PROJECT_LIST)
(L1DefineFieldStart,
L1DefineField,
L1DefineFieldExt,
L1DefineFieldExtHandle)
<disable functions>*
(L1DesignerProhibitAction,
L1DesignerProhibitFunction)
<call designer>
(L1DefineLayout)
<close Job>
(L1JobClose)

It is sufficient for job management to get the job at the beginning of the program and to release it at the end; this
job is then used both for Designer calls and printing. Normally a job handle can be retained for the whole lifetime
of the application, so that it only has to be released at the end.

We recommend making global settings valid for all List & Label calls after LIJobOpen()/LIJobOpenLCID() and
making local settings such as disabling menu items directly before calling the Designer or printing.

5.3.2 Annotations
If setting of certain options is required, then this must of course be done before calling the Designer.

54

Programming Using the API The Print Process

Normally the user is asked (by a file selection dialog) which file he would like to process. Let's assume in our
example that a label is to be processed:

It is important that the buffer receiving the filename is pre-initialized - either to an empty string ("), or to a file name
suggestion (which also sets the path!):

TCHAR aczProjectFile [_MAX_PATH];

_tcscpy(aczProjectFile, "c:\\mylabel.1lb1l");

L1SelectFileD1lgTitle(hJob, hWindow, "Choose label", LL_PROJECT_LABEL,
aczProjectFile, _MAX_PATH, NULL);

Of course this can also be done with an individual dialog box, or a file name can be passed to the Designer directly
if the user should not be given the option of choosing.

List & Label must be informed of the possible variables in order to make them available to the user during design
time or print time. Otherwise, the user could only use fixed text in the object definitions.

First of all, the variable buffer is cleared (in case variables have been previously defined. The call is also
recommended to make sure that the variable buffer is empty, and no variables remain from the previous print job
that might be meaningless in this next task):

L1DefineVariableStart(hJob);

Now the variables can be declared in various ways. If the Designer knows sample data for a variable, then these
are used instead of the variable name in the preview window in order to guarantee a more realistic preview display.

L1DefineVariable(hJob, "forename", "George")
L1DefineVariable(hJob, "lastname", "Smith");

And so the expression

forename +""+lastname'
is transformed to

'‘George Smith'

If list objects are also required - in a 'report' or list project (LL_PROJECT LIST) - then the programmer must also
make the necessary fields available. This is done analogously to the above (barcode fields and drawings are also
possible table columns), except that the function names contain "Field" instead of "Variable":

L1DefineFieldStart(hJob);

L1DefineField(hJob, "book");

L1DefineField(hJob, "ISBN");

L1lDefineFieldExt(hJob, "ISBN", "48|15589|97531", LL_BARCODE_EAN13, NULL);
L1DefineFieldExt(hJob, "photo", "c:\\dwg\\test.bmp", LL_DRAWING, NULL);

Before calling L/Definelayout(), menu items can be deleted by L/DesignerProhibitAction() or blocked so that the
Designer cannot be minimized. The latter can be done by calling:

L1DesignerProhibitAction(hJob, LL_SYSCOMMAND_MINIMIZE);
Now everything has been defined sufficiently for the user to edit his project and the Designer can be started:
L1DefineLayout(hJob, hWindow, "test title", LL_PROJECT_LABEL, "test.lbl");

For a list, change the constant to LL_PROJECT LIST, or for a file card project to LL_PROJECT _CARD.

Please note that in the Designer you will generally see the data of only one record (multiple times) in the Designer.
It is possible to provide a real data preview in the designer. See chapter "Direct Print and Export From the Designer"
for further information.

Checking for error codes is generally recommended.

5.4 The Print Process
5.4.1 Supplying Data

List & Label also works database-independently in this mode. This means that the application is (i.e. you as a
programmer are) responsible for supplying the data. You tell List & Label, by calling a function, which data (fields)

55

Programming Using the API The Print Process

are available in your application (e.g. "A Field called <Name>, a field called <Lastname> etc.") and which content
this field should have. Where you get the data from at print time is totally irrelevant for List & Label. In most cases
you probably perform a read access to a record field in a database.

To integrate the Designer into your application, you need to tell List & Label about the available data fields by calling
a function for each of your data fields that may be placed in the form. With this call, you may also optionally declare
the field type (e.g. text, numeric, boolean, date etc.) to List & Label, which is e.g. relevant for the correct treatment
of your fields and variables in formulas within the Designer. You may pass a sample content for each field, which
is used during the design in the layout preview. If you want to support the real data preview in the Designer, please
follow the instructions in chapter "Direct Print and Export From the Designer".

During printing, the passing of data works analogously, apart from the fact that you have to supply the real data
content instead of the sample content. This has to be done for all fields used, while you are iterating all records
you want to print out.

5.4.2 Real Data Preview or Print?

In principle the printing loop always looks the same, whether you print to preview (LL_PRINT _PREVIEW), printer
(LL_PRINT_NORMAL) or file (LL_PRINT FILE). The only difference is a parameter setting at the beginning of the
print (see L/Print{WithBox/Start()). You may, however, leave the target choice to the end user (LL_PRINT_EXPORT)
by giving him the option to choose the print target within the print dialog called by L/PrintOptionsDialog().

5.4.3 Basic Procedure

First of all a List & Label job is opened (L/JobOpen() or LIJobOpenlLCID()) and, if necessary, global List & Label
options are set (L/SetOption()). Now List & Label has to be informed that printing should start (L/PrintiVithBoxStart()).
With this call, the project file to be used for printing is passed to List & Label. At this point, the project is opened
and parsed by List & Label. During this process a syntax check is performed on all variables, fields and formulas
used. This requires List & Label to know all variables and fields you are making available to your end users. For this
reason, you must define all variables and fields using the L/DefineVariable() and LIDefineField() functions before
calling L/PrintWithBoxStart().

As only the names and types are important at this point, not the contents, you may call the same routine you use
to define all variables and fields for the Designer (e.g. with a sample content, or the content of the first record).

A print usually proceeds as follows (functions with *' are optional calls which are not necessarily required):

<open Job>
(L1JobOpen, L1JobOpenLCID)
<define List & Label-settings>*
(L1SetOption,
L1SetOptionString,
L1SetFileExtensions,
L1SetNotificationMessage,
L1SetNotificationCallback)
<print> (see below)
<close Job>
(L1JobClose)

Printing Labels and File Cards
For a label or file card print (LL_PROJECT LABEL, LL_ PROJECT CARD), the <print> part looks as follows:

<define all possible variables>
(L1DefineVariableStart,
L1DefineVariable,
L1DefineVariableExt,
L1DefineVariableExtHandle)

<define options>*
(L1SetPrinterDefaultsDir)

<start print>
(L1PrintStart,
L1PrintWithBoxStart)

<define print options>*
(L1PrintSetOption,
L1PrintSetOptionString,
L1PreviewSetTempPath)

<let user change options>*
(L1PrintOptionsDialog,
L1PrintOptionsDialogTitle,
L1PrintSelectOffsetEx,
[L1PrinterSetup])

56

Programming Using the API

The Print Process

<define constant variables>
(L1DefineVariable,
L1DefineVariableExt,
L1DefineVariableExtHandle)

<get printer info for progress-box>*
(L1PrintGetOption,
L1PrintGetOptionString,
L1PrintGetPrinterInfo)

<skip unwanted labels>*

<print while data left and no error or user abort>
{
<give progress-status>*

(L1PrintSetBoxText,
L1PrintGetCurrentPage,
L1PrintGetOption)

<define variables>

(L1DefineVvariable,
L1DefineVariableExt,
L1DefineVariableExtHandle)

<print objects>
(L1Print)
<no warning, no user abort: next data record>

}

<end print>
(L1PrintEnd)

Printing Lists
And for printing a report (LL_PROJECT LIST):

<define all possible variables>
(L1DefineVariableStart,
L1DefineVariable,
L1DefineVariableExt,
L1DefineVariableExtHandle)

<define all possible fields>
(L1DefineFieldStart,
L1DefineField,
L1DefineFieldExt,
L1DefineFieldExtHandle)

<define options>*
(L1SetPrinterDefaultsDir)

<start print>
(L1PrintStart,
L1PrintWithBoxStart)

<define options>
(L1PrintSetOption,
L1PrintSetOptionString,
L1SetPrinterDefaultsDir,
L1PreviewSetTempPath)

<let user change options>*
(L1PrintOptionsDialog,
L1PrintOptionsDialogTitle,
L1PrintSelectOffsetEx,
[L1PrinterSetup])

<define constant variables>
(L1DefineVariable,
L1DefineVariableExt,
L1DefineVariableExtHandle)

<print variables> (print all objects)
L1Print

<while "page full" warning (LL_WRN_REPEAT_DATA) do>
L1Print

<repeat >
{
<define fields>
(L1DefineField,
L1DefineFieldExt,
L1DefineFieldExtHandle)
<print row>
(L1PrintFields)

<while "page full" warning (LL_WRN_REPEAT_DATA) do>

57

Programming Using the API The Print Process

<define page specific variables>*
(L1Definevariable,
L1DefineVariableExt,
L1DefineVariableExtHandle)
<re-print>
(L1Print)
(L1PrintFields)
<goto next data record>
<give progress report>*

(L1PrintSetBoxText,
L1PrintGetCurrentPage,
L1PrintGetOption)

}
<until
-error or
-no data records left or
-user abort
>
<Print final footer and all linked objects>
(L1PrintFieldsEnd)
<while "page full"-warning (LL_WRN_REPEAT_DATA) do>
(L1PrintFieldsEnd)
<end print>
(L1PrintEnd)

5.4.4 Annotations

Starting Print: Reading the Project File

Before the print can be started, it is important to know which project is to be loaded and which variables are to be
made available.

After the optional dialog where the user can choose the project file, LISelectFileDIgTitleEx(), all variables which are
to be included in this project must be defined. If List & Label evaluates an expression in which there is an unknown
variable, then it ends the loading process and passes back the corresponding error code. The definition of variables
is programmed in the same way as the definitions before calling the Designer.

In the case of a list project (LL_PROJECT LIST), the corresponding fields must also be defined in order to avoid an
error.

Once you have called

L1PrintWithBoxStart(hJob, LL_PROJECT LABEL, aczProjectFile, LL_PRINT NORMAL,
LL_BOXTYPE_BRIDGEMETER, hWindow, "my test");

and no error is returned from this function, List & Label has read the definition of the project and is ready to print.
The printer is, however, not initialized yet - this is done with the first function call which starts the printing job.

If you want to allow the user to change the print parameters, the corresponding dialog is called using:
L1PrintOptionsDialog(hJob, hWindow, "Print Parameter");

With L/SetOption() and LISetOptionString() standard values for that particular printout can be given, for example
L1PrintSetOption(hJob, LL_OPTION_COPIES, LL_COPIES_HIDE);

suppresses the "copies" query in the print options dialog.

If "Save options permanently" has been checked in the dialog then the chosen printer setting is saved in a so-called
"orinter definition file". Initially, the printer and layout is determined in the Designer (menu: Project > Page Layout).
If this file is not found, then the Windows standard printer is used. Further information on this can be found in
chapter "List & Label Files".

List Projects: Important Things to Note

Variables - in the case of list projects - are values which remain constant for one page, and fields are the record-
dependent data. These are printed using L/PrintFields().

58

Programming Using the API The Print Process

When calling L/Print() the objects that are not lists are printed, as well as the list headers (if the option
LL OPTION_DELAYTABLEHEADERLINE is not set, otherwise the table header will be delayed until the first data line
is to be printed). List & Label then expects the records to be defined.

With every LIPrintFields() it is tested whether the data record to be printed fits onto the current page. If this is not
the case, LL WRN REPEAT DATA is returned, which indicates that a new page should be started. In this case don't
increment the record pointer.

When the table is full, the variables for the next page must be defined before calling L/Print(), as with this L/Print()
any linked objects are printed, the new page is started and - see above - the objects on the new page including list
headers printed.

A forced page break is possible by calling L/Print() at any time, which ends the present page if this has already been
partially filled.

Copies
"Copies" can mean two different kinds of copies:

a) Copies of labels usually do not mean that multiple pages should be printed, but the copies should be located on
labels next to each other.

To support this, get the number of copies before the first L/Print() call so that you know how many copies should
be printed of each label, and set the copies for List & Label to 1, so that List & Label does not use printer copies
too.

// user can change the number of copies...:
L1PrintOptionsDialog(hJob, hWnd, "Printing...");

nCopies = L1PrintGetOption(hJob,LL PRNOPT_COPIES);
L1PrintSetOption(hJob,LL_PRNOPT COPIES,1);

Then, print the requested number of labels:

for (nCopy = 1; (nCopy < nCopies) &% (nError == 0); ++nCopy)

nError = L1Print(hJob);
// support AUTOMULTIPAGE (usually memos in file cards)
while (nError == LL_WRN_REPEAT_DATA)

nError = L1Print(hJob);

}

b) True copies of the sheets, that is, identical pages. This kind of copies is directly handled by List & Label, so no
special handling from the developer is necessary.

Speed Optimization
a) Application optimization
At first, variable definitions which are to be constant during printing, can be pulled out of the print loop. If you want

to always print your company name in the letter head with lists, it's best to define it outside the loop before
LIPrintWithBoxStart().

b) Is the variable / field used?

You can also query which variables or fields are used in the expressions. If the number of potential variables or
fields is much bigger than the actually used number or getting the data values is complex (sub queries, calculations,
etc.) using these functions is worth it. Calling L/GetUsedldentifiers() returns all variables and fields used in the
project. LIGetUsedldentifiersEx() furthermore allows to differentiate between the type (variable or field).

You should call this function before print start and later only pass the fields or variables from your data source
which will actually be used.

c) Global "Dummy'-job

Some of the system libraries (e.g. riched20.dll) used by List & Label seem to cause resource losses under certain
circumstances. These are very small but incur with every load and unload of the DLL.

These DLLs are loaded or unloaded by List & Label with every open or close of the "first" job. Therefore you should
avoid a frequent LIJobOpen() / LIJobClose() in your application or to start a dummy job at start and keep it open
until the end. The permanent loading and unloading of the DLLs is avoided and besides the achieved speed
optimization also the resource losses won't occur anymore.

59

Programming Using the API Printing Relational Data

5.5 Printing Relational Data

List & Label offers a convenient way of designing projects with multiple relationally linked database tables
(hierarchical reports). The report container is also the easiest way for the user to work with multiple tables, charts
crosstabs or charts in table columns. The rest of this chapter handles working with LL_PROJECT LIST type projects.
LL PROJECT LABEL orLL PROJECT CARD type projects support exactly one table and an arbitrary number of sort
orders for this table that can be set and retrieved just as for LL_ PROJECT LIST projects.

In the following we use "table" as a synonym for a group of matching fields in the List & Label-Designer or in the
"Objects" tool window. You are not restricted to "real" databases - it is also possible to display a class array or
dynamically created data in a "table", or all member variables of a class. In the List & Label-Designer you will
work with just one "report container object". This object can contain multiple tables, crosstabs and charts.

Once you have added single tables with LIDbAddTable(), your users can edit the structure in the "Objects" tool
window. You will find further information on how to design the report container object in the corresponding chapter
of the Designer manual. This chapter focuses on how to control such designs.

Examples of how to use multiple tables for the most common programming languages are included in the
installation.

5.5.1 Using a Custom Print Loop

If your programming environment is not able to work with COM interfaces, you can support relational data by
coding your own print loop. A few features (e.g. multiple report containers on one page) are not available. If you
have the possibility, we recommend using the ILLDataProvider interface as described in chapter "Using the
ILLDataProvider Interface".

API Functions Needed

The name of the API functions needed to control this functionality begin with L/Db... or LIPrintDb.... You can add
tables (LIDbAddTable()), define sortings for the tables (L/IDbAddTableSortOrder()) and define relations between
tables (LIDbAddTableRelation()).

At print time you can query the currently active table (L/IPrintDbGetCurrentlable()) as well as the currently active
relation and sort order (L/PrintDbGetCurrentlableSortOrder(), LIPrintDbGetCurrentlableRelation()). You will find
detailed descriptions later in this chapter.

Calling the Designer
First all tables have to be declared to List & Label, so that they can be inserted into the project:

L1DbAddTable(hJob, "", ""); // delete existing tables
L1DbAddTable(hJob, "Orders", "ORDERS");
L1DbAddTable(hJob, "OrderDetails", "ORDER DETAILS");

The first parameter is the usual job handle of the List & Label job. The second parameter is the table ID, which will
be returned during printout by L/PrintDbGetCurrentlable(). The third parameter is the display name of the table in
the Designer. If you pass NULL or an empty string, the table ID will be used as display name as well.

A special role is assigned to the table name "LLStaticTable". This is reserved and can be used for the insertion
of 'static' contents (fixed texts or contents of variables, chart signatures etc.). This type of static table is then
available as "Free content" data source and can only be filled with data lines by the user in the Designer. You
must react accordingly to the table in your code - a detailed explanation is provided in the Printing subchapter.

In the next step the relations between the tables will be defined. List & Label does not directly differ between
different types relationships (n:m, 1:n) — you declare a relation with a relation ID which can be queried at print time:

L1DbAddTableRelation(hJob, "OrderDetails", "Orders",
"Orders20rderDetails", NULL);

With this command, you have established a relationship between the child table "OrderDetails" and the parent table
"Orders". In this case only the ID of the relation was passed and will be displayed in the Designer.

Finally you can pass sort orders for the tables. Again, you define a unique ID for every sort order that can then be
queried at print time:

L1DbAddTableSortOrder(hJob, "Orders", "OrderDate ASC",
"Order Date [+]");

60

Programming Using the API Printing Relational Data

L1DbAddTableSortOrder(hJob, "Orders", "OrderDate DESC",
"Order Date [-]");

This allows the user to choose one of these sort orders (as well as the default "unsorted") in the Designer. If you
use LIDbAddTableEx() to define the tables, you can also support multiple (stacked) sortings.

The remaining action when calling the Designer is analogous to the "normal" call, i.e. the complete scheme for
calling the Designer with multiple tables looks like this:

<open job>
(L1JobOpen, L1JobOpenLCID)
<define List & Label-settings>
(L1SetOption,
L1SetOptionString,
L1SetDebug,
L1SetFileExtensions,
L1SetNotificationMessage,
L1SetNotificationCallback)
<which file?>
L1SelectFileDlgTitleEx
<define data structure>
(L1DbAddTable,
L1DbAddTableRelation,
L1DbAddTableSortOrder)
<define variables>
(L1DefineVariableStart,
L1DefineVariable,
L1DefineVariableExt,
L1DefineVariableExtHandle)
<define fields>
(L1DefineFieldStart,
L1DefineField,
L1DefineFieldExt,
L1DefineFieldExtHandle)
<disable funtions>
(L1DesignerProhibitAction,
L1DesignerProhibitFunction)
<call designer>
(L1DefineLayout)
<close job>
(L1JobClose)

Make sure that you pass all field names in the form of "<tableid>.<fieldname>" in order to enable List & Label
can connect these to their corresponding table (e.g. "Orders.OrderlD").

If you want to add fields of a 1:1 relation, please refer to chapter "Handling 1:1 Relations".

Controlling the Print Engine

The control of hierarchical reports with List & Label occurs more or less analogously to the print flow in the last
chapter. With the function L/PrintDbGetCurrentTable() you can query which table's values are to be passed - as
usual with L/DefineField[Ext/() and LIPrintFields(). Depending on the layout, there are two specific cases:

* Tables can be consecutive (multiple tables following each other at the same level)
* The user could have added a sub-table to the current table
We will deal with these cases in the next two sections.

Multiple Independent Tables on the Same Level

An example for this would be a list of customers followed by a chart of employees. Both tables can be independent.
The print loop for this looks very similar to the print loop in the last chapter — with one difference. Usually, you tell
List & Label that a table is finished (no more data) by calling L/PrintFieldsEnd(). Now you may get the return value
LL WRN _TABLECHANGE, meaning that there is another table to print in the layout.

We suggest splitting your print loop into different subroutines.

The first part declares the data and the structure, starts the print job and initializes the first page so that printing of
a table can be started. For ease of reading, the optional part of the print loop is not shown here, as it has already
been shown in the last chapter.

61

Programming Using the API Printing Relational Data

<define data structure>
(L1DbAddTable,
L1DbAddTableRelation,
L1DbAddTableSortOrder)
<define all possible variables>
(L1DefineVariableStart,
L1DefineVariable,
L1DefineVariableExt,
L1DefineVariableExtHandle)
<define all possible fields>
(L1DefineFieldStart,
L1DefineField,
L1DefineFieldExt,
L1DefineFieldExtHandle)
L1SetPrinterDefaultsDir
<begin print>
(L1PrintStart,
L1PrintWithBoxStart)
<define options>
(L1PrintSetOption,
L1PrintSetOptionString,
L1PreviewSetTempPath)
<define fixed variables>
(L1DefineVariable,
L1DefineVariableExt,
L1DefineVariableExtHandle)
<print variables> (print all objects)
(L1Print)
<as long as warning repeat>
(L1Print)

The second part of the print loop needs an auxiliary function. This function prints the data of a single (database)
table

function PrintTable(DataTable Dataobject)

{
// DataTable is an adequate object for data access, e.g. a
// table of a database, a class array or similar
<repeat>
{
<define fields of DataTable>
(L1DefineField,
L1DefineFieldExt,
L1DefineFieldExtHandle)
<print line>
(L1PrintFields)
<as long as warning repeat >
(L1Print,
L1PrintFields)
<next data record in DataTable>
<until last data record in DataTable reached>
<print footer line>
(Ret = L1PrintFieldsEnd)
<as long as warning "page full" repeat>
(Ret = L1PrintFieldsEnd)
<result = Ret>
}

The return value specifies whether another table follows (L/PrintFieldsEnd() returns LL_WRN _TABLECHANGE) or if
the print can be finished (return value 0).

With this function, the second part of the print — the part after the initialization of the first page — can be coded as
follows:

<repeat>

{
<get current table name >
(L1PrintDbGetCurrentTable)
<get current sorting>

62

Programming Using the API

Printing Relational Data

(L1PrintDbGetCurrentTableSortOrder)
<generate a corresponding DataTable object>
<Ret=PrintTable(DataTable)>

<until Ret <> LL_WRN_TABLECHANGE>

<finish printout>

(L1PrintEnd)

If you have declared the "LLStaticTable" table for free contents and L/PrintDbGetCurrentlable() provides this
table as the current table, your printing loop must react to it by printing a single data line via LIPrintFields(). In
the above example, you could simply generate a DataTable object with just one data record for the case of
"LLStaticTable", and printing will then automatically run correctly.

This code already allows an arbitrary sequence of multiple tables in series. In the following chapter, we will expand
it to print sub-tables as well.

Simple 1:n Relations

The typical example for this case is the previously discussed 1:n relation order — order details. After each record
with order data, the order details for that data shall be printed.

The printing of a data line is triggered by L/PrintFields(). Analogously to the behavior of L/PrintFieldsEnd() in the last
section, the function returns LL_WRN _TABLECHANGE if the user has placed a sub-table, and you then have to
respond.

You can ask for the table relation with L/IPrintDbGetCurrentRelation() and for the name of the child table with
LIPrintDbGetCurrentlableName(). With this information, you can invoke the auxiliary function Print7iable() from the
last section again. This call must be placed directly after L/PrintFields() — thus from the function PrintTable() itself.
The function must be changed in order to call itself recursively:

function PrintTable(DataTable data object)

{

// DataTable is an adequate object for data access, e.g. a
// table of a database, a class array or similar

<repeat>
{
<define fields of DataTable>
(L1DefineField,
L1DefineFieldExt,

L1DefineFieldExtHandle)
<print row>
(L1PrintFields)
<as long as warning repeat>
(L1Print,
Ret = L1PrintFields)
<as long as Ret = LL_WRN_TABLECHANGE repeat>
{
<get current table name>
(L1PrintDbGetCurrentTable)
<get current relation>
(L1PrintDbGetCurrentTableRelation)
<get current sorting>
(L1PrintDbGetCurrentTableSortOrder)
<generate an appropriate DataTable child object>
<Ret = PrintTable(child DataTable)>
¥

<next record in DataTable>

}

<until last record in DataTable is reached>

<print footer line>
(Ret = L1PrintFieldsEnd)

< as long as warning "page full" repeat >
(Ret = L1PrintFieldsEnd)

<result = Ret>

63

Programming Using the API Printing Relational Data

Any sequence of tables and sub-tables can be printed with this code. The recursion ensures that it works properly
with any "depth", i.e. this code can control arbitrary multilevel relations.

The Recursive Print Loop

For a complete print loop which is supporting sequence tables und sub-tables, there is nothing more to do. The
code from the last two sections makes sure that the complete tree of the table structure is printed.

So only the finishing touches have to be added — e.g. to display a progress bar. The structure of a layout can be
quite complex. Thus it is not possible to just take the current position inside the data source as percentage. This
approach does not work as soon as the user puts two tables in series. Therefore List & Label allows you to get the
count of tables at the root level (L/PrintDbGetRootTable Count()). Whenever you display a data record from the root
level, you can update the progress bar.

The following holds for the maximum available percentage of a table:

INT nMaxPerc = 100/L1PrintDbGetRootTableCount();

If you index the root tables from 0.. L/PrintDbGetRootTable Count()-1, you can calculate the total percentage as

INT nPercTotal = nMaxPerc*nIndexCurrentTable+(nPerc/100*nMaxPerc);

where nPerc is the percentage position in the current table. To properly update the progress bar, you can adapt
the function PrintTable() from the last section. The current depth of the recursion can be determined with another
input parameter — if this parameter is 0, a "root" data record is printed and the progress bar can be updated:

function PrintTable(DataTable data object, depth of recursion depth)
{
<repeat>

{
<define fields of DataTable>

<if depth==0 update progress bar>
(L1PrintDbGetRootTableCount,
L1PrintSetBoxText)
<print row>
(L1PrintFields)
<as long as warning repeat >
(L1Print,
Ret = L1PrintFields)
<repeat until Ret <> LL_WRN_TABLECHANGE >
{

<generate an appropriate DataTable child object>
<Ret = PrintTable(child DataTable, depth+1)>

Supplying Master Data as Variables

In the case of an order with the relevant order details, it could be desirable to offer the "master" data, i.e. in this
example the data of the table orders, as variables. So the addressee could e.g. be displayed in a text object and
the order details in a table object. Therefore, at the root level of the table object you need to have access to the
sub-tables of the master table. In order to achieve this, call LIDbSetMasteriable(). The necessary calls are

L1DbAddTable(hJob, "Orders", "");

L1DbAddTable(hJob, "OrderDetails", "");

L1DbAddTableRelation(hJob, "OrderDetails", "Orders",
"Orders20rderDetails", NULL);

L1DbSetMasterTable(hJob, "Orders");

The print loop is analogous to the description above, but you have to make the appropriate child table available on
the top level (see chapter "Multiple Independent Tables on the Same Level"):

<repeat>
{
<get current table name>
(L1PrintDbGetCurrentTable)
<get current sorting>
(L1PrintDbGetCurrentTableSortOrder)
<get current relation>

64

Programming Using the API Printing Relational Data

(L1PrintDbGetCurrentTableRelation)
<if relation empty>

<generate an appropriate DataTable object>
<else>

<generate an appropriate child DataTable object>
<Ret = PrintTable(DataTable)>

<until Ret <> LL_WRN_TABLECHANGE>

<close printing>
(L1PrintEnd)

5.5.2 Using the ILLDataProvider Interface

Instead of a manual implementation of the print loop, you can also use the ILL-DataProvider Interface. This is the
most flexible and convenient way for the developer to use the API.

Advantages

By using the interface instead of an individual implementation, most of the print logic can be mapped automatically
directly within List & Label.

e Generally better reusability and thus maintainability of the code.

e Many of the advanced features that are already available in .NET are also available in this way.
e Use of several report containers next to each other.

e Nesting of tables.

e Increased performance due to delayed loading of content.

Prerequisites

First, the general requirements for programming via APl apply. Since the ILLDataProvider interface is based on a
COM interface, the programming language used must support the use of Microsoft's Component Object Model.
You may then implement the ILLDataProvider interface depending on the required functionality.

Calling the Designer

The call of the designer is similar to the call in general APl programming. If the option
LL OPTION_SUPPORT DELAYEDFIELDEFINITION is set, the steps marked with * do not need to be executed in
advance. List & Label then queries sort orders, variables and fields at the required time via the data provider itself.

// Initialization
<create instance of your own ILLDataProvider implementation>
<create print job, set parameters and the data provider>
(L1JobOpen, L1SetOption)
<define data structure>
(L1DbAddTable,
L1DbAddTableRelation,
L1DbAddTableSortOrder*)
<define all possible variables>
(L1DefineVariableStart,
L1DefineVariable*,
L1DefineVariableExt*,
L1DefineVariableExtHandle*)
<define all possible fields>
(L1DefineFieldStart,
L1DefineField*,
L1DefineFieldExt*,
L1DefineFieldExtHandle*)

// Job, Designer
<start Designer>
(L1DefineLayout)

// Deinitialization

<detach Data provider and close job>
(L1SetOption,
L1JobClose)

Controlling the printing process

Initialization and deinitialization are carried out in the same way as the Designer call. The print loop itself is as short
as possible, since the actual logic is now within List & Label.

65

Programming Using the API Printing Relational Data

// Initialization

(...)

// Job, print loop

<Start printing>
(L1PrintWithBoxStart)

<repeat>

{

(L1Print)

}

<Exit print>
(L1PrintEnd)

// Deinitialization

<detach Data provider and close job>
(L1SetOption,
L1JobClose)

Required API functions and interface

With the supplied Visual C+4 example "Print and Design Reports (SQL data source)' you will find an executable
example for the implementation.

The pseudo code for designer call and print loop shows easily that the set of required API functions differs only
slightly from the classic APl programming. However, some parts are relocated into the data provider
implementation.

In the general initialization part after LIJobOpen, the data provider instance must first be made known and,
optionally, the delayed loading must be activated. At this point, you would also register the callbacks for preview
and drilldown.

auto pDP = (ILLDataProvider*) new MyDataProviderObject;
::L1SetOption(hJob, LL_OPTION_ILLDATAPROVIDER, (LPARAM)pDP);
::L1SetOption(hJob, LL_OPTION_SUPPORT_DELAYEDFIELDDEFINITION, 1);

To create the data provider instance, you need at least one class that implements the ILLDataProvider interface. In
addition, Querylnterface, AddRef and Release from [Unknown must also be implemented. List & Label
distinguishes internally between root objects and nodes. This distinction can now be made either across several
classes (see example below) or, for simplicity's sake, within one class.

Methods that are not implemented return E_NOTIMPL.

#define SMI STDMETHODIMP
class DPBase : public ILLDataProvider

{

// From ILLDataProvider

SMI OpenTable(LPCWSTR pszTableName, IUnknown** ppUnkOfNewDP) = 0;

SMI OpenChildTable(LPCWSTR pszRelation, IUnknown** ppUnkOfNewDP) = 0;
SMI GetRowCount(INT* pnRows) = ©;

SMI DefineDelayedInfo(enDefineDelayedInfo nInfo) = 0;

SMI MoveNext() = ©;

SMI DefineRow(enDefineRowMode, const VARIANT* arvRelations) = ©;

SMI Dispose() = ©;

SMI SetUsedIdentifiers(const VARIANT* arvFieldRestriction) = 0;

SMI ApplySortOrder(LPCWSTR pszSortOrder) = 0;

SMI ApplyFilter(const VARIANT* arvFields, const VARIANT* arvValues) = 0;
SMI ApplyAdvancedFilter(LPCWSTR pszFilter, const VARIANT* arvValues) = 0;
SMI SetOption(enOptionIndex nIndex, const VARIANT * vValue) = ©;

SMI GetOption(enOptionIndex nIndex, VARIANT * vValue) = 0;

}s
class DPRoot : public DPBase{ .. };
class DPNode : public DPBase{ .. };

66

Programming Using the API Printing Relational Data

OpenTable (ILLDataProvider)

Syntax:
HRESULT OpenTable (LPCWSTR pszTableName, IUnknown** ppUnkOfNewDP) ;

Task:
Only used at root level. Requests the creation of a new node below the root and returns the new interface
to List & Label.

Parameter:

pszTableName: The requested table name
ppUnkOfNewDP: Target address for the new object

Return value:
E_NOTIMPL for node objects, otherwise S_OK or E_FAIL in case of an error

Hints:
Required as an entry point for the data provider. List & Label delegates the actual work to the created nodes
and subnodes.

Example:
*ppUnkOfNewDataProvider = new DPNode (_hJob, pszTableName) ;
return S OK;

See also:
OpenChildTable (ILLDataProvider)

OpenChildTable (ILLDataProvider)

Syntax:
HRESULT OpenChildTable (LPCWSTR pszRelation, IUnknown** ppUnkOfNewDP) ;

Task:
Only used at node level. Requests the creation of a new sub-node and returns the new interface to List &
Label.

Parameter:

pszRelation: The requested relation name or table name
ppUnkOfNewDP: Target address for the new object

Return value:
E_NOTIMPL for root objects, otherwise S_OK or E_FAIL in case of error

Hints:
The data provider is able to create the requested object hierarchies controlled by List & Label using
OpenChildTable.

Example:
*ppUnkOfNewDataProvider = new DPNode (hJob, this, pszRelation);
return S OK;

See also:
OpenTable (ILLDataProvider)

GetRowCount (ILLDataProvider)

Syntax:
HRESULT GetRowCount (INT* pnRows) ;

Task:
Only used at node level. Requests the number of data lines of the data object. If no record number is
available due to performance limitations, simply return S_FALSE. In this case, List & Label does not support
a progress bar.

Parameter:

pnRows: Target address for the number of data rows

67

Programming Using the API Printing Relational Data

Return value:
E NOTIMPL for root objects, otherwise S OK or S FALSE or E_FAIL in case of an error

Example:
*pnRows = _count;
return S_OK;
See also:
SetOption (ILLDataProvider), OPTION_HINT _MAXROWS

DefineDelayedinfo (ILLDataProvider)

Syntax:
HRESULT DefineDelayedInfo (enDefineDelayedInfo nInfo);

Task:
Only used at node level. If the option LL_OPTION _SUPPORT DELAYEDFIELDEFINITION is set, then List &
Label requests the definition of the sort orders via this method.

Parameter:
ninfo: One of the following values

DELAYEDINFO _SORTORDERS_DESIGNING, asks for the sort orders at design time.
DELAYEDINFO_SORTORDERS_PRINTING, asks for the sort orders at print time.

Return value:
E_NOTIMPL for root objects, otherwise S_OK or E_FAIL in case of error

Hints:

Empty sort orders can also be returned with S_OK.
Example:

for (auto& column_rec : pTableRec-> columns)

DefineSortOrders (pTableRec, column_rec, nInfo);

return S OK;
See also:
LIDbAddTableSortOrder, LIDbAddTableSortOrderEx

MoveNext (ILLDataProvider)

Syntax:
HRESULT MoveNext () ;

Task:
Only used at node level. List & Label requests to move the cursor of the data object to the next row.

Parameter:
None

Return value:
E_NOTIMPL for root objects and E_FAIL in the event of an error. Usually S_OK if successful or S_FALSE if
no more data is available.

Hints:

In order for a cursor to be moved, the data object usually has to already exist completely. In the case of an
SQL provider, this means that the required query has already been assembled and initiated at this point in
time. You should initialize your enumerator exactly now (and not earlier) as MoveNext () is called initially to
get the first row of data.

DefineRow (ILLDataProvider)

Syntax:
HRESULT DefineRow (enDefineRowMode nMode, const VARIANT* arvRelations);

Task:
Only used at node level. List & Label requests to pass the data of the current record.

68

Programming Using the API Printing Relational Data

Parameter:

enum enDefineRowMode

{
ROWMODE_DEFAULT = @, // internal, not yet queried
ROWMODE_OWN_COLUMNS = 1, // bit o
ROWMODE_1TO1_COLUMNS = 2, // bit 1
ROWMODE_ALL_COLUMNS = 3, // bit @ | bit 1
ROWMODE_COLUMN_MASK = ©Oxeof,
ROWMODE_DATA_PRINT_SYNTAXPARSING = 0x00, and
ROWMODE_DATA_DESIGN = 0x10,
ROWMODE_DATA_PRINT_REALDATA = 0x20,
ROWMODE_DATA_MASK = 0xf®,
ROWMODE_FIELD = ©x100,

}s

nMode: Bitmask for the type of data
arvRelations: Not used

Return value:
E_NOTIMPL for root objects and E_FAIL in the event of an error. Usually S_OK.

Hints:
Pass the requested fields and variables to List & Label here.

See also:
LIDefineFieldExt, LIDefineVariableExt

Dispose (ILLDataProvider)

Syntax:
HRESULT Dispose () ;

Task:
Only used at node level. Resources such as database connections can be released here.

Parameter:
None

Return value:
E_NOTIMPL for root objects. Usually S_OK.

SetUsedldentifiers (ILLDataProvider)

Syntax:
HRESULT SetUsedIdentifiers (const VARIANT* arvFieldRestriction);

Task:

Only used at node level. List & Label informs the provider which fields are required. Use this method, for
example, to restrict an underlying SQL (select) statement in the data object.

Parameter:
arvFieldRestriction: BSTR Variant Array with the maximum number of fields to be requested.

Return value:
E_NOTIMPL for root objects, otherwise S_OK

Hints:
If no used identifiers are set here, there is no restriction to set - all fields are then requested.

69

Programming Using the API Printing Relational Data

Example:
_usedIdentifiers.clear();// to be used when building query later
for (int i = 0;

i < int(arvFieldRestriction->parray->rgsabound[0].cElements); ++1i)

VARIANT vItem;
long lIndex = i;
SafeArrayGetElement (arvFieldRestriction->parray,
&1Index, &vItem);
std::wstring ws(vItem.bstrVal, SysStringLen (vItem.bstrVal));
_usedIdentifiers.insert(ws.c_str());
}
See also:

LIGetUsedldentifiers

ApplySortOrder (ILLDataProvider)

Syntax:
HRESULT ApplySortOrder (LPCWSTR pszSortOrder);

Task:

Only used at node level. List & Label sets the required sort order via this method. Use it, for example, to add
an ORDER BY clause to your SQL statement.

Parameter:
pszSortOrder: Tab separated string with the requested sort orders.

Return value:
E_NOTIMPL for root objects, otherwise S_OK

See also:
LIGetUsedldentifiers

ApplyFilter (ILLDataProvider)

Syntax:
HRESULT ApplyFilter (const VARIANT* arvFields, const VARIANT* arvValues) ;

Task:

Only used at node level. In the drilldown case, List & Label transfers a field list and its contents. For example,
you can use WHERE to restrict an underlying SQL statement in the data object.

Parameter:
arvFields: VARIANT field with the field names

arvValues: VARIANT field of equal size with the field contents

Return value:
E_NOTIMPL for root objects, otherwise S_OK or E_FAIL in case of error

Hints:
Empty filter requests can also be answered with S_OK.

Example:
SAFEARRAY* pArray = arvFields->parray;
SAFEARRAY* pValArray = arvValues->parray;
for (ULONG i = 0; 1 < pArray->rgsabound[0].cElements; ++1i)
{
CSafeVARIANT vHelper, vValHelper;
long 1ResIndex[2] = { i, 1 };
::SafeArrayGetElement (pArray, lResIndex, &vHelper);
::SafeArrayGetElement (pValArray, lResIndex, &vValHelper);
_sqglparms. ddwhere += xsprintf(L"%1ls%ls = %1s",
_sqglparms. ddwhere.empty() ? L"WHERE " : L"AND ",
(LPCTSTR)MakeDBColumnString (this, vHelper));

70

Programming Using the API Printing Relational Data

(LPCTSTR)MakeDBValueString (this, vHelper, vValHelper)):;

}
return S_OK;

SetOption (ILLDataProvider)

Syntax:
HRESULT SetOption (enOptionIndex nIndex, const VARIANT* vValue);

Task:

Only used at node level. List & Label transfers additional information about the status of the data provider.
These can be used in the implementation for optimizations.

Parameter:
nindex: One of the following values

OPTION_HINT _MAXROWS, is set, for example, to restrict an underlying SQL statement in the data
object to vValue rows.

OPTION_HINT IS INFO_QUERY, is set if the data provider only queries structure information to
dynamically fill the field names in the variable tree in List & Label Designer, for example.

All other constant values are currently only for internal use and can be ignored.
VWalue: The variable value

Return value:
E_NOTIMPL for root objects, otherwise S_OK

GetOption (ILLDataProvider)

Syntax:

HRESULT GetOption (enOptionIndex nIndex, VARIANT* vValue) ;
Task:

Only used at node level. List & Label queries additional information with this.
Parameter:

nindex: One of the following values

OPTION_SCHEME_AND_DEFAULTS, is used to optimize schema queries. By default, this option
must be ignored first or the result in VvWalue must be set to
OPTION_SCHEMAROWUSAGEMODE_NONE.

OPTION_SUPPORTED _AS 1 TO_1 RELATION, is used to determine whether a given relation
can also be resolved "backwards" as a 1:1 relation. In this case, the name of the relation is passed
with vWalue and the return value is to be returned with S_FALSE or S_OK.

vValue: Pointer to variant for data exchange

Return value:
E_NOTIMPL for root objects, otherwise dependent on nindex.

5.5.3 Handling 1:1 Relations

When reporting 1:1 relations, the data is usually combined by a database query with a SQL JOIN, so that the data
is available in one table. If this is not the case or if you do not want this, you can display the 1:1 relations in the list
of variables below the fields of the parent table. To accomplish this, you have to declare the fields in a special
syntax.

1:1 Relations Without a Key Field Definition

If the key fields for the relation are not relevant - if, for example, you are dealing with a trivial, single 1:1 relation
between the two connected tables - you can declare the fields as follows:

<parent table>:<linked table>.<field name>, e.g.
OrderDetails:Orders.OrderDate

This adds a folder with the field OrderDate to the list of variables below the OrderDetails hierarchy:

71

Programming Using the API Callbacks and Notifications

e Crder_Details

4 [Orders

5 il Customers
> - Employees
: Shippers
CustomerlD
EmployeelD
Freight
OrderDate

Of course, you must make sure that when printing the OrderDetails table, you fill this field with the corresponding
value for each record.
1:1 Relation With Key Field Definition

In case of multiple 1:1 connections, it might be important for the user to see which of the key fields are linking the
tables together. In this case you can declare the fields as follows:

<parent table>.<key field parent table>@ <linked table>.<key field linked table>:<field name>, e.qg.
OrderDetails.OrderlD@Orders.OrderlD:OrderDate

(SQL equivalent: "SELECT OrderDate FROM Orders WHERE OrderDetails.OrderlD= Orders.OrderlD")

Now the key field declaration is displayed in the tool window list of variables next to the table name:
a - Order_Details

4.1 Orders (Order_Details.OrderlD—Crders.Qrderl DY)

o .41 Custorners (Orders.Customer|D—=Customers.Custormer| 1)

> - Employees (Orders.EmployeelD—<Employees.EmployeelD)

> - Shippers (Orders.ShipVia<=Shippers.ShipperlD)

CustormerlD

EmployeelD

Freight

D OrderDate

Again, remember to update the field contents when the parent table is printed!

Performance Hints

When using 1:1 relations, it is very important to check whether the user has actually placed a field of the linked
table. You can do this by using the wildcard option with L/Print/sFieldUsed(). If you want to check whether a field
of the 1:1 linked table Orders inside the table OrderDetails is being used, you can call

L1PrintIsFieldUsed(hJob, "OrderDetails.OrderID@Orders.OrderID*");

If the result is 0, no field of the table orders is being used and it is not necessary to update the values.

5.6 Callbacks and Notifications

This chapter is only required if you are not working with one of the components (.NET/NVCL/OCX). If you are using
one of these components, you may skip this chapter.

5.6.1 Overview

The following principle is to be understood by the expressions "callbacks and notifications": when List & Label
needs information then it just asks your program. You don't have to pre-program all answers, just those for which
you explicitly wish a modified behavior.

For example, there are objects which are program definable (user objects, see next chapter) which are handled by
List & Label as a "black box". And when List & Label has to print such an object it turns to your program to ask it to
carry out this function. This allows your application to extend the support for special objects, for example graphics
with formats not implemented in List & Label. This is easier than a whole COM interface, because you need to
supply only one function for the job.

72

Programming Using the API Callbacks and Notifications

Using the callback function you can add data to a page (important for labels: when needed you can add information
like page no., print date or similar onto a page outside of the labels) which is controlled by the programmer (and
consequently cannot be removed by the user in the Designer). Objects can be hidden (this can also be done with
LIPrintEnable Object() or the appearance condition of an object).

All this is possible if you implement one of the following:
* acallback routine is defined and its address is passed on to List & Label by L/SetNotificationCallback(), or

* you react to messages sent by List & Label via Windows messages. These are sent by List & Label to the
window which is stated with L/DefinelLayout() and LIPrintWithBoxStart().

In both cases you obtain detailed information about the function which is to be carried out.

The rest of this chapter describes how to implement such a callback routine. For an overview of all available
callbacks, see chapter "Callback Reference'".

5.6.2 User Objects

As List & Label cannot draw all possible objects - be they spline objects, statistic graphs or drawings with an
unknown format - a function has been built into List & Label to offer the programmer so-called user objects, as
even metafile variables cannot cover all areas.

If you have defined a variable in your program with
L1DefineVariableExt(hJob, <Name>, <Content>, LL_DRAWING_USEROBJ, NULL);
the user can define an object in the Designer which is connected to this variable. This takes place analogously to

normal LL_DRAWING variables.

When List & Label needs to print this object, it calls your program using the callback LL_ CMND_DRAW USEROBJ
to pass this task on to your program, as List & Label has no idea what kind of "visual" action needs to be taken.

The same can be done for table fields, so that the user has the capability of including an user object in a table:
L1DefineFieldExt(hJob, <Name>, <Content>, LL_DRAWING_USEROBJ, NULL);

For variables, but not for fields, it is also possible to define user objects whose parameters can be changed by the
user in the Designer, just like the object properties of List & Label's own objects. These objects are defined with
the LL_ DRAWING _USEROBJ DLG type:

L1DefineVariableExt(hJob, <Name>, <Content>, LL_DRAWING_USEROBJ_DLG, NULL);

(This means that editable user objects cannot be inserted in tables. Only non-editable user objects can be used as
table field.)

If the user selects the image in the Designer and clicks on the Variable's "Properties" sub item in the property
window, the callback LL_EDIT USEROBJ is invoked to request a dialog in which the parameters belonging to the
object can be changed. These parameters are automatically stored in the project definition file with the other object
information and passed with the callback LL_DRAW USEROBJ for evaluation, so that your program does not have
to take care of further storage of the parameters.

Note that you should only work with DIB (device independent bitmaps) in callback objects, DDB (device dependent
bitmaps) can be incompatible with the respective printer DC.

5.6.3 Definition of a Callback Routine

A callback routine is defined like a normal Windows callback. For special features such as compiler switches,
please refer to your compiler manual.

The general form of a callback is, in C

LRESULT CALLBACK _extern LLCallback(INT nMsg, LPARAM 1lParam, UINT_PTR lUserParam);
You can pass the routine pointer immediately:

L1SetNotificationCallback(hJob, LLCallback);

From now on your routine will be called by List & Label if necessary.

73

Programming Using the API Callbacks and Notifications

At the end of the program it is important that the callback is set to NULL, otherwise your system will raise an
unhandled exception.

L1SetNotificationCallback(hJob, NULL);

5.6.4 Passing Data to the Callback Routine

The value of the nMsg parameter determines the different functions. The values are the constants which begin
with LL_ CMIND xxxx, e.g. LL_ CMND TABLEFIELD, LL_NTFY xxxx or LL_INFO.

Depending on the task your program has to perform, the parameter IParam has different meanings. The individual
meanings are described later on. They are mostly structures (records) which IParam points to, so the value must
therefore be cast by a type conversion to a structure pointer:

LRESULT CALLBACK _extern
LLCallback(INT wParam, LPARAM 1lParam, UINT_PTR lUserParam)

{
PSCLLTABLEFIELD pSCF;
switch (wParam)
{
case LL_CMND_TABLEFIELD:
pSCF = (PSCLLTABLEFIELD)1Param;
// do something using pSCF;
break;
return(0);
}

The function must always return a defined value. Unless stated otherwise, this value should be zero.

IUserParam is the value passed by
L1SetOption(hJob, LL_OPTION_CALLBACKPARAMETER, <Value>)
This can be used to store an object pointer ("this", "self') in object-oriented languages.

5.6.5 Passing Data by Messages

Every message has three parameters: nMsg, wParam and IParam in the following definition of your message
callback (this is called a window procedure, but is nothing but a callback!)

LRESULT WINAPI MyWndProc(HWND hWnd, UINT nMsg, WPARAM wParam, LPARAM lParam);

The message value which List & Label uses can be queried by L/GetNotificationMessage(). If the default setting is
not suitable for your purposes (by definition a unique value) another can be chosen with L/SetNotificationMessage().

wParam is once again our function index and /Param points to an intermediate structure of the type scLICallback:

struct scLlCallback

{
int _nSize;
LPARAM _1Param;
LRESULT _1Result;
UINT_PTR _lUserParameter;
}

The necessary /Param (as parameter value) and _/Result (as return value) are stored in this structure.

nLLMessage = LlGetNotificationMessage(hJob);
M oooo

//...in the window procedure...

if (wMsg == nLLMessage)

PSCCALLBACK pSC;
PSCLLTABLEFIELD pSCF;

pSC = (PSCCALLBACK)1Param;
switch (wParam)

74

Programming Using the API Advanced Programming

{
case LL_CMND_TABLEFIELD:
pSCF = (PSCLLTABLEFIELD)pSC->_1Param;
// do something;
pSC._1Result = 0;
break;
}

_[UserParam is the value passed by
L1SetOption(hJob, LL_OPTION_CALLBACKPARAMETER, <value>)

This can be used to store an object pointer ("this", "self') in object-oriented languages.

When no special return value is needed, the /Result field doesn't need to be changed, as it is set to 0 by default.

5.6.6 Further Hints
Some callback structures for drawing operations contain two device contexts. Both are identical and kept only for
backward compatibility reasons.

If you select a GDI object in this DC or make other changes, e.g. change the mapping mode, you should reverse
the changes before ending the routine.

Tip: the Windows API functions SaveDC(), RestoreDC() can help considerably for complex changes.

5.7 Advanced Programming

This chapter is only required if you are not working with one of the components (.NET/NVCL/OCX). If you are using
one of these components, you may skip this chapter.

5.7.1 Direct Print and Export From the Designer

Introduction

It is possible to provide the Designer with data for preview, so that the user sees the report as it will be when
printed. Furthermore, there is the possibility of printing or exporting directly from the Designer.

For C+ + there is already a fully functional sample source code available. You will find it in the directory "Samples
> Visual C++ > Designer Preview and Drilldown ".

Your development environment must comply with the following conditions, so that this feature can be supported:
e |t can respond to callbacks (refer to chapter "Callbacks and Notifications")

e |t can start a thread with a print procedure and supports synchronization elements such as Mutex, Critical
Section or similar.

The work to be undertaken by your code includes execution of your usual real data print/ export routine, however
— at least for the preview — in a separate thread. For this purpose, information about the pending task (start, abort,
end and query status) is supplied via a callback. A pointer to a scL/DesignerPrintJob structure will be passed,
specifing all neccessary information for the respective task. There are only a few changes necessary compared to
a regular print/export.

Preparation

In order to enable the direct preview or export functionality within the designer, you have to set one or both of the
following options:

o [L OPTION DESIGNERPREVIEWPARAMETER for preview of real data
o L OPTION DESIGNEREXPORTPARAMETER for the export from the designer

The value that you pass via these options can be defined by yourself, for example a pointer to an internal data
structure or object. You receive this back unchanged in the callback (scL/DesignerPrintJob. nUserParam).
Important for List & Label is that it is not 0 or -1.

Via callback LL_NTFY _DESIGNERPRINTJOB List & Label informs you about the task that has to be performed. This
callback will always be called in the context of the designer thread (this is the thread, from which L/DefineLayout)
was called).

75

Programming Using the API Advanced Programming

When you use structure members, e.g. like nUserParam, please ensure that the thread has evaluated or copied
them before you pass control back to List & Label, as the structure will no longer be valid then — this is true for
all Callbacks!

Tasks

Now to the individual tasks, that will be put to you via the callback being indicated by various values of
scLIDesignerPrintJob. nFunction. The symbolic constants for them all start with LL DESIGNERPRINTCALLBACK...:
Start Event (... PREVIEW_START/..._EXPORT_START)

Should you receive this Event, you will have to create a thread and pass the start parameters to it.

This thread creates a new List & Label- job, and causes the new job to basically lead to the execution of "a standard"
print loop. In addition to the normal print loop you will have to perform the following modifications:

e Before print start set the option LL_OPTIONSTR_ORIGINALPROJECTFILENAME to the path, as delivered by the
structure.

e After starting the print job, use L/PrintSetOption(hJob ,LL_PRNOPT LASTPAGE, nPages) to set the maximum
number of pages to be printed, as passed by the callback structure.

e After each L/IPrint(), check if the number of pages has exceeded this value, if so call function L/PrintAbort(). This
optimization can and should also be used for normal print jobs. In this case you should not abort, but end
printing normally using L/PrintEnd().

e Indicate the thread status using the provided event hEvent of the callback structure to List & Label, once at
the start and once at the end of the thread. It is important to synchronize the signaling of the event in a way
that makes sure that the following call to QUEST JOBSTATE delivers the correct state RUNNING/STOPPED.
As you're signaling the event from the thread, you cannot use the thread status, but will have to use a
corresponding variable. This process status has to be handled individually for each thread.

e Delete the remaining project data after printing

Additionally the following points have to be considered:
Preview

e Pass the window handle you've received in the callback structure via LIAssociatePreviewControl(hJob,hWnd, 1)
to List & Label before calling L/IPrint(WithBox)Start, so that the print job is informed where the data should be
presented.

e After completing printing, that is after L/PrintEnd() call LIAssociatePreviewControl(hJob,NULL,1), so that
preview control regains control of the preview data. If a print error occurs, the last parameter has to be 0, so
that the preview control is empty and not showing the last project.

Export

o Use LIPrintWithBoxStart(), so that a status box can be displayed. For the parent window handle use additionally
the window handle passed by the callback structure.

e If the user selects a direct export from the Ribbon's menu, the pszExportFormat member of the struct is set.
In this case, call L/IPrintSetOptionString(hJob, LL PRNOPTSTR_EXPORT, pszExportFormat) to preset the
required export format and do not show the print options dialog (L/PrintOptionsDialog()) if bWithoutDialog is
TRUE.

Abort Event (... PREVIEW_ABORT/... EXPORT_ABORT)

If you receive this event, simply call L/PrintAbort() to abort the print job for the preview/export thread. The print loop

of the thread ensures correct handling.

Finalize Event (... PREVIEW FINALIZE/... EXPORT_FINALIZE)

Will always be called, so that you can release internal data structures.

Status Query Event (..._PREVIEW_QUEST _JOBSTATE/..._EXPORT_ QUEST_JOBSTATE)

Is used to keep List & Label toolbar icons and menu options up to date. Return
LL DESIGNERPRINTTHREAD STATE RUNNING ~ when your thread is running, otherwise return
LL DESIGNERPRINTTHREAD STATE STOPPED.

Activity

Of course you can support multiple start events. Before each start, List & Label checks if a print thread is running,
and stops it if necessary with an abort event.

76

Programming Using the API Advanced Programming

Designer-Thread Print-Thread
Start-Event:
. Copies the start parameter of the
callback
. Starts the print thread and waits on
signal that it is ready (Event)
starts:

e sets process status internally to
RUNNING

e indicates change of state per
SetEvent(hEvent) to List & Label

e indicate readiness
returns to List & Label

From now on both the designer and preview/export run in parallel.

Normal designer execution. e create new job
Abort e starts print loop with changes
e calls LIPrintAbort() for the print job already mentioned above
and returns When printing is complete:
Status Query e set internal process state to
e returns the value of the process STOPPED
status e indicate state change per
Completion SetEvent(hEvent) to List & Label
e calls LIPrintAbort() if necessary and e endjob

waits for thread to end))
e delete project file

It is advisable to use a unique structure for both output types, and then provide the address of the structure using
LL _OPTION_DESIGNERPREVIEWPARAMETER and LL_OPTION_DESIGNEREXPORTPARAMETER to List & Label.
This structure should contain:

e apointer to a object that manages the data source (if necessary i.e. possible)
e asynchronization object (CRITICAL_SECTION)

e the thread handle of the thread in progress

e the job handle of the worker thread

e variables as copies of the start parameter

If your data source only allows single threaded access, you must set
LL _OPTION_DESIGNERPRINT SINGLETHREADED to TRUE. This will be used by List & Label, so that during the
preview calculation no export is possible, and vice versa.

5.7.2 Drilldown Reports in Preview
Drilldown reporting means navigation in hierarchical data through different detail levels.

Initially only the top level will be printed to preview (for example "Customers"). With a click on a customer, a new
report (for example "Orders") will be opened, that contains detail information for this record. In this manner, you
"drill down" through different levels until you reach for example the products a customer has ordered in a specific
order. One of the advantages is the performance gain by means of specialization. Drilldown is available in preview.
Drilldown can be defined for table rows and table fields.

Using drilldown requires that your development system can handle callbacks or window notifications (see chapter
"Callbacks and Notifications")

The .NET and VCL components in databound mode support drilldown automatically if a data source is used that
supports hierarchies and can be reset. Most DataProviders comply with this requirement. If using the
component in this manner, you can skip this chapter.

For C+ + there is already a fully functional sample source code available. You will find it in the directory "Samples
> Visual C++ > Designer Preview and Drilldown ".

77

Programming Using the API Advanced Programming

For other development systems, it is suggested to implement drilldown with different threads, so tasks can be
done in the background. In this case, you will need to be able to start a thread with the printing procedure and you
will need synchronisation elements like mutex or critical section.

Your task is to initiate a real data print job with a corresponding filtered data source. For this purpose, information
about the task (start and end of a drilldown report) is available in the callback. Only minor changes to the normal
print job routines are necessary.

Preparations
To enable drilldown in List & Label set the option LL_OPTION _DRILLDOWNPARAMETER to a value unequal to O.

Please note that this option has to be set for each LL-job that should support drilldown:

// activate Drilldown for current LL-Job
::L1SetOption(hJob, LL_OPTION_DRILLDOWNPARAMETER,
(LPARAM)&oMyDrillDownParameters);

To deactivate drilldown for this LL-job set the option to NULL:

// deactivate Drilldown for current LL-Job
::L1SetOption(hJob, LL_OPTION_DRILLDOWNPARAMETER, NULL);

The parameter passed with this option can be used freely, for example as a pointer to an internal data structure or
objecets. This parameter will be passed unchanged in the callback for your use (scL/DrillDownJob. nUserParam).
Please make sure the parameter is not 0 or NULL unless you want to deactivate drilldown.

Via the callback LL NTFY VIEWERDRILLDOWN (for further description, please see chapter "Callbacks and
Notifications") List & Label informs about the current task. This callback will always be called in the context of the
preview thread, regardless if initiated from designer or preview print.

When you use structure members, e.g. like _nUserParam, please ensure that the thread has evaluated or copied
them before you pass control back to List & Label, as the structure will no longer be valid then — this is true for
all Callbacks!

Tasks

Now to the individual tasks, that will be put to you via the callback being indicated by various values of
scLiDrillDowndob. _nFunction:

57.2.1.1 Start Event (LL_DRILLDOWN_START)

If this event is fired, you can create a thread and pass on the drilldown parameters. If your development systems
does not support threads, you should use the main thread for the print job. In this case your program will not be
usable for this period.

The return value of the callback (resp. the /Reply member of the scL/Callback-structure) should be set to a unique
number, so you can assign the drilldown reports to the corresponding thread.

Example:
LRESULT 1Result = 0;
case LL_DRILLDOWN_START:
{

scL1DrillDownJob* pDDJob = (scL1DrillDownJob*)1Param;
.. StartSubreport(pDDJob); ..

// generate new Drilldown-JobID

1Result = ++m_nUniqueDrillDownJobID;

}
case LL_DRILLDOWN_FINALIZE:

{ scL1DrillDownJob* pDDJob = (scL1DrillDownJob*)1Param;
if (pDDJob->_nID == @)
{ // clean up
}
else
{
// clean up the corresponding job
}
}

78

Programming Using the API Advanced Programming

return (lResult);

}

After copying the parameters, this thread creates a new List & Label job that uses the regular print loop. The
following differences have to be made before calling L/PrintStart():

e set the option LL_OPTIONSTR_PREVIEWFILENAME to the path, that has been passed in the structure with
_pszPreviewFileName

Example:

// set preview filename

::L1SetOptionString(pMyDrillDownParameters->m_hL1Job,
LL_OPTIONSTR_PREVIEWFILENAME,
pMyDrillDownParameters ->m_sPreviewFileName);

e Pass on the hAttachinfo to List & Label that has been passed with the callback structure, so the print job is
informed whrere the data should be displayed.

Example:

// attach viewer
::L1AssociatePreviewControl(pMyDrillDownParameters->m_hL1Job,
(HWND) pMyDrillDownParameters->_hAttachInfo,
LL_ASSOCIATEPREVIEWCONTROLFLAG_DELETE_ON_CLOSE |
LL_ASSOCIATEPREVIEWCONTROLFLAG_HANDLE_IS_ ATTACHINFO);

5.7.2.1.2 Finalize Event (LL_DRILLDOWN_FINALIZE)
This event will be called for drilldown jobs, that have been canceled, so you can release internal data structures.
Additionally it is suggested, that active print jobs should be aborted by calling L/PrintAbort().

If the n/D member of the scL/DrillDownJob structure that has been passed by List & Label is 0 all active drilldown
jobs can be ended and released. This happens if ending the preview.

B.7.2.1.3 Preparing the Data Source
To provide the correct data for the drilldown report minor changes to the printing loop are neccessary.

Relation(s)

Drilldown can only be used when relations are declared. For drilldown reports use the function
LIDbAddTableRelationEx(). This function has 2 additional parameters: pszKeyField and pszParentKeyField for the
key field of the child table and the key field of the parent table, so a unique assignment can be made.

Further information can be found in the description of the function L/IDbAddTableRelationEx().
Please note, that the key fields must contain the table name as a prefix, for example "Customers.Customer|D".

Example:
Declare the relation between 'Customers' and 'Orders' table for drilldown using the northwind sample.

// add relation

CString sParentField = pMyDrillDownParameters->_pszSubreportTableID +
_T(".")+pMyDrillDownParameters->_pszKeyField; //Orders.CustomerID
CString sChildField = pMyDrillDownParameters-> pszTableID + _T(".") +
pMyDrillDownParameters->_pszSubreportKeyField; //Customers.OrderID
::L1DbAddTableRelationEx(hJob,
pMyDrillDownParameters->_pszSubreportTablelD, // "Orders"
pMyDrillDownParameters-> pszTableID, // "Customers"
pMyDrillDownParameters->_pszRelationID, _T(""),
sParentField, sChildField);

Datasource

For each drilldown report the datasource should be filtered differently, because only the data related to the parent
record that has been clicked is needed.

For example you want to create a drilldown structure from "Customers" to "Orders". In this case the parent table
should show all customers. A click on one customer should show only the corresponding orders related to this

79

Programming Using the API Advanced Programming

special customer. Therefor the datasource must only contain the orders from this customer. All necessary
information for filtering the child table can be found in the structure 'scLIDrillDownJob'.

5.7.3 Supporting the Report Parameter Pane in Preview

Out of the box, report parameter printing is already supported automatically. However, if you want to support a re-
rendering from the preview window, you need to signal your support to List & Label by setting some additional
options. For convenience, this feature uses the same callback as drilldown printing, so in most cases you can
simply reuse your existing code and just make sure it works even if no drilldown filter is set in the passed structure
(i.e. all table IDs and key field values are empty).

Preparations
To enable report parameter printing in List & Label set the option
LL _OPTION_REPORT PARAMETERS REALDATAJOBPARAMETER to a value unequal to 0.

Please note that this option has to be set for each LL-job that should support report parameter printing:

// activate report parameter pane for current LL-Job
::L1SetOption(hJob, LL_OPTION_REPORT_PARAMETERS_REALDATAJOBPARAMETER,
(LPARAM)&oMyReportParameters) ;

To deactivate report parameter printing for this LL-job set the option to NULL:

// deactivate report parameter pane for current LL-Job
::L1SetOption(hJob, LL_OPTION_REPORT_PARAMETERS_REALDATAJOBPARAMETER, NULL);

The parameter passed with this option can be used freely, for example as a pointer to an internal data structure or
objects. This parameter will be passed unchanged in the callback for your use (scL/DrillDownJob. nUserParam).
Please make sure the parameter is not 0 or NULL unless you want to deactivate report parameter printing.

Via the callback LL_NTFY VIEWERDRILLDOWN (for further description, please see chapter "Drilldown Reports in
Preview") List & Label informs about the current task. This callback will always be called in the context of the
preview thread, regardless if initiated from designer or preview print.

When you use structure members, e.g. like nUserParam, please ensure that the thread has evaluated or copied
them before you pass control back to List & Label, as the structure will no longer be valid then — this is true for
all Callbacks!

5.7.4 Supporting Expandable Regions in Preview

If this feature is supported, elements in the report container can be expanded and collapsed dynamically in the
preview window. For convenience, this feature uses the same callback as drilldown printing, so in most cases you
can simply reuse your existing code and just make sure it works even if no drilldown filter is set in the passed
structure (i.e. all table IDs and key field values are empty).

Preparations

To enable expandable regions in List & Label set the option
LL OPTION_EXPANDABLE REGIONS REALDATAJOBPARAMETER to a value unequal to O.

Please note that this option has to be set for each LL-job that should support expandable regions:

// activate expandable regions for current LL-Job
::L1SetOption(hJob, LL_OPTION_EXPANDABLE_REGIONS_REALDATAJOBPARAMETER,
(LPARAM)&oMyExpandableRegions);

To deactivate expandable regions for this LL-job set the option to NULL:

// deactivate expandable regions for current LL-Job
::L1SetOption(hJob, LL_OPTION_EXPANDABLE_REGIONS_REALDATAJOBPARAMETER, NULL);

The parameter passed with this option can be used freely, for example as a pointer to an internal data structure or
objecets. This parameter will be passed unchanged in the callback for your use (scL/DrillDownJob. _nUserParam).
Please make sure the parameter is not 0 or NULL unless you want to deactivate expandable regions.

80

Programming Using the API Advanced Programming

Via the callback LL_NTFY VIEWERDRILLDOWN (for further description, please see chapter "Drilldown Reports in
Preview") List & Label informs about the current task. This callback will always be called in the context of the
preview thread, regardless if initiated from designer or preview print.

When you use structure members, e.g. like nUserParam, please ensure that the thread has evaluated or copied
them before you pass control back to List & Label, as the structure will no longer be valid then — this is true for
all Callbacks!

5.7.5 Supporting Interactive Sorting in Preview

If this feature is supported, report container table header fields can be used to toggle between different sortings
in the preview window. For convenience, this feature uses the same callback as drilldown printing, so in most
cases you can simply reuse your existing code and just make sure it works even if no drilldown filter is set in the
passed structure (i.e. all table IDs and key field values are empty).

Preparations
To enable interactive sortings in List & Label set the option
LL _OPTION_INTERACTIVESORTING REALDATAJOBPARAMETER 1o a value unequal to 0.

Please note that this option has to be set for each LL-job that should support interactive sortings:

// activate interactive sortings for current LL-Job
::L1SetOption(hJob, LL_OPTION_INTERACTIVESORTING_REALDATAJOBPARAMETER,
(LPARAM)&oMyInteractiveSortings);

To deactivate interactive sortings for this LL-job set the option to NULL:

// deactivate interactive sortings for current LL-Job
::L1SetOption(hJob, LL_OPTION_INTERACTIVESORTING REALDATAJOBPARAMETER, NULL);

The parameter passed with this option can be used freely, for example as a pointer to an internal data structure or
objecets. This parameter will be passed unchanged in the callback for your use (scL/DrillDownJob. nUserParam).
Please make sure the parameter is not 0 or NULL unless you want to deactivate expandable regions.

Via the callback LL_NTFY VIEWERDRILLDOWN (for further description, please see chapter "Drilldown Reports in
Preview") List & Label informs about the current task. This callback will always be called in the context of the
preview thread, regardless if initiated from designer or preview print.

When you use structure members, e.g. like nUserParam, please ensure that the thread has evaluated or copied
them before you pass control back to List & Label, as the structure will no longer be valid then — this is true for
all Callbacks!

5.7.6 Handling Chart and Crosstab Objects

The easiest way to work with charts and crosstabs is to insert them into the report container. See chapter "Printing
Relational Data" for a detailed explanation.

However, for label and card projects it might be interesting to access these objects separately.
In the following chapter whenever "chart" is mentioned "crosstab" also applies.

Besides working with the report container, there are two different modes when handling chart objects. Choose the
one you require via the option LL OPTION USECHARTFIELDS. In principle, printing charts is similar to printing
tables, i.e. you first declare a data record you wish to pass to the chart object and pass this record afterwards.

Standard Mode (Default)

This mode can only be used with list projects and does not require any changes to existing projects. The chart
objects are fed with the same data as the table objects, an L/PrintFields() sends data to both chart objects and table
objects. However, the charts only accumulate the data and are not printed right away. This mode is included for
compatibility reasons and can be used to easily fill charts that are linked to table objects.

81

Programming Using the API Using the DOM-API (Professional/Enterprise Edition Only)

Enhanced Mode

This mode is activated by setting the option LL_OPTION _USECHARTFIELDS to TRUE. In this case, besides variables
and fields you have special chart fields available. These can be declared similarly to normal fields via API calls. This
mode offers more flexibility than the standard mode; your users may

e use chart objects wherever they like (no printing order has to be obeyed)
* use chart objects in label / card projects.

LIPrintFields() in this mode does not have any influence on the charts, the analogous command in the enhanced
mode is L/PrintDeclare ChartRow/(). This API call passes the data currently defined to the chart objects. Which chart
objects are addressed can be determined by the parameter:

Value Meaning

LL DECLARECHARTROW - The data is passed to all chart objects not
FOR_OBJECTS contained in table columns.

LL DECLARECHARTROW - The data is passed to all chart objects in
FOR TABLECOLUMNS table columns.

For charts within a label project, the following pseudo code would apply:

<print start>

(L1PrintStart,
L1PrintWithBoxStart)
<while
- no error and not finished>
{
<define variables>
<while
- no error or
- not finished (ex. i = 1..12)>
{
<define chart fields (ex. Month = MonthName[i])>
<send data to chart controls>
(L1PrintDeclareChartRow(LL_DECLARECHARTROW_FOR_OBJECTS))
¥
<print objects>
(L1Print)
<no warning, no abortion: next record>
}
<done>
(L1PrintEnd)

Of course, all chart fields used must also be declared before calling the Designer, in order to enable your users to
use them at all.

5.8 Using the DOM-API (Professional/Enterprise Edition Only)

This chapter is only required if you're not working with one of the components .NET/VCL, where a type safe object
model for accessing the DOM functionality is available. If you are using one of these components, you may skip
this chapter and turn to one of the DOM samples for a quick start.

In order to create project files dynamically for the runtime or to edit existing project files by code, you can use the
List & Label DOM functions.

5.8.1 Basic Principles

Each "object" within a project file has its own handle ("DOM handle"). The functions of the DOM-API use this handle
to uniquely identify objects. An "object" in this sense is any designer object, but also other elements such as
auxiliary lines, project parameters etc. The DOM viewer included in the scope of supply enables a quick overview
of all objects, their value and other properties. In addition, properties / values can be changed with the viewer, and
saved in the project. The clipboard function enables any object or property to be copied to the clipboard for further
use.

82

Programming Using the API Using the DOM-API (Professional/Enterprise Edition Only)

The functions relevant for the DOM-API are divided into 2 groups: first, project files can be loaded, created and
saved. The functions L/ProjectOpen(), LIProjectClose() and Ll/ProjectSave() are available for this purpose. The
function LIDomGetProject() (called immediately after L/ProjectOpen()) returns the DOM handle for the project
object. This then provides the basis for using the other functions.

DOM Functions

LIDomGetObject

With this function, important subobjects can be obtained from the project object. In order to obtain the object list,
for example,

L1ProjectOpen(hJob, LL_PROJECT_LIST, "c:\\filename.lst",
LL_PRJOPEN_AM_READONLY) ;

HLLDOMOBJ hProj;

L1DomGetProject(hJob, &hProj);

HLLDOMOBJ hObjList;

INT nRet = L1lDomGetObject(hProj, "Objects", &hObjList);

can be used. The other available objects correspond to the entries in the tree structure in the DOM viewer: "Layout",
"ProjectParameters", "Settings", "SumVars" and "UserVars". A description of the individual objects with most
properties can be found in the reference chapter; the emphasis here is on the principle of working with the DOM
functions.

LIDomGetSubobjectCount

Serves to query the number of subobjects in the specified list. To query the number of objects in the project, for
instance, use

INT nObjCount;
INT nRet = L1DomGetSubobjectCount(hObjList, &nObjCount);

LIDomGetSubobject

Returns the DOM handle of the specified subobject. In addition to the DOM handle for the list, parameters are the
index (O-based) and a pointer for return of the handle. The code for a DOM handle to the first object in the projectfile
is

HLLDOMOBJ hObj;
INT nRet = L1DomGetSubobject(hObjList, ©, &hObj);

LIDomCreateSubobject

Creates a new subobject in the specified list. Parameters are the list handle, the insertion position, the desired type
and a handle pointer for the new object. In order to insert a new text object at the beginning of the object list, use

HLLDOMOBJ hObj;
INT nRet = L1lDomCreateSubobject(hObjList, @, _T("Text"), &hObj);

You can create the following objects within the object list with the help of these functions, for example:

Object type Required third parameter
Line "Line"

Rectangle "Rectangle"

Ellipse "Ellipse"

Drawing "Drawing"

Text "Text"

83

Programming Using the API Using the DOM-API (Professional/Enterprise Edition Only)

Template '"Template"

Barcode "Barcode"

RTF "RTFText"

HTML "LLX:LLHTMLODbject"

Report container (may contain tables, "ReportContainer"
charts and crosstabs)

Gauge "Gauge"
PDF "PDF"

Further possible values for other lists (e.g. field list within a table) can be found in the DOM Viewer's online help.

LIDomDeleteSubobject
Deletes the specified subobject. In order to delete the first object in the object list, for example, use the code

INT nRet = L1DomDeleteSubobject(hObjList, ©);

LIDomSetProperty

Allows you to set a property for the specified object. In order to allow the pagebreak for a text object, for example,
you need

INT nRet = L1lDomSetProperty(hObj, _T("AllowPageWrap"), _T("True"));

The transfer parameter for the value must be a valid List & Label formula. A special feature results for properties
that contain character strings (e.g. the content of a text paragraph): character strings must be set in quotation
marks within the Designer, to enable their use as a valid formula. Therefore, in order to transfer the fixed text
"combit", the parameter "combit" must be used. This also applies for fixed font names, for example; once again,
"Verdana" must be transferred, for example, not "Verdana".

Example code: LIDomSetProperty(hObj, _T("Contents"), T(") + sProjectTitle + _T("));

In order to set the values of nested properties, such as the color of a filling, the property name "<Parent
property>.<Child property>" can be used, so for example

INT nRet = L1lDomSetProperty(hObj, _T("Filling.Color"), _T("LL.Color.Black"));

LIDomGetProperty

Reads out the value of a property. It is advisable to determine the necessary buffer length first of all by transferring
a NULL buffer, as usual, and then to allocate an adequately large buffer:

INT nBufSize = LlDomGetProperty(hObj, _T("AllowPageWrap"), NULL, 0);
TCHAR* pszBuffer = new TCHAR[nBufSize];
INT nRet = L1DomGetProperty(hObj, _T("AllowPageWrap"), pszBuffer, nBufSize);

delete[] pszBuffer;

For simplification, objects (but not lists!) can also be "tunneled through" using the full stop as hierarchy separator,
as for example:

//US: Get the page coordinates for the first page
L1DomGetProperty(hRegion, _T("Paper.Extent.Horizontal"),
pszContainerPositionWidth, nBufSize);

84

Programming Using the API Using the DOM-API (Professional/Enterprise Edition Only)

Units

Many properties contain information on sizes, widths etc. These are - if transferred as fixed numbers - interpreted
and returned as SCM units (1/1000 mm) and are therefore independent of the selected unit system. In order to
place an object in a (fixed) position 5 mm from the left margin, you would use

INT nRet = L1lDomSetProperty(hObj, _T("Position.Left"), _T("5000"));

If the property is to contain a formula rather than a fixed value, the function UnitFromSCM must be used, in order
to be independent of the units. An inside margin with an indent of 10 mm on odd and 5 mm on even pages would
be produced with

INT nRet = L1lDomSetProperty(hObj, _T("Position.Left"), T("Cond(Odd(Page()),
UnitFromSCM(10000), UnitFromSCM(5600))"));

5.8.2 Examples

Creating a Text Object

The following code creates a new project, inserts a text object inside which is a new paragraph with the content
'DOM", and saves the project:

HLLJOB hJob = L1JobOpen(-1);

// Create new project
L1ProjectOpen(hJob, LL_PROJECT_LIST,"c:\\simple.lst",
LL_PRJOPEN_CD_CREATE_ALWAYS | LL_PRJOPEN_AM_READWRITE);

HLLDOMOBJ hProj;
L1DomGetProject(hJob, &hProj);

// Get object list
HLLDOMOBJ hObjList;
L1DomGetObject(hProj, "Objects", &hObjList);

// Create text object

HLLDOMOBJ hObj;

L1DomCreateSubobject (hObjList, @, _T("Text"), &hObj);
L1DomSetProperty(hObj, _T("Name"), _T("My new Textobject"));

// Get paragraph list
HLLDOMOBJ hObjParagraphList;
L1DomGetObject(hObj, _T("Paragraphs"), &hObjParagraphlList);

// Create new paragraph and create contents

HLLDOMOBJ hObjParagraph;

L1DomCreateSubobject (hObjParagraphList, @, _T("Paragraph"), &hObjParagraph);
L1DomSetProperty(hObjParagraph, _T("Contents"), _T("'DOM'"));

// Save project
L1ProjectSave(hJob, NULL);
L1ProjectClose(hJob);

L1JobClose(hJob);

Creating a Table

This example shows the creation of a table object inside a report container and creates a new dataline and three
columns inside it.

Please note that, even if you do not use the APIs to control the report container, you must create a report
container with exactly one table.

85

Programming Using the API Using the DOM-API (Professional/Enterprise Edition Only)

HLLJOB hJob = L1JobOpen(-1);

// Create new project

L1ProjectOpen(hJob, LL_PROJECT_LIST, "“c:\\simple.lst",
LL_PRJOPEN_CD_CREATE_ALWAYS | LL_PRJOPEN_AM_READWRITE);

HLLDOMOBJ hProj;
L1DomGetProject(hJob, &hProj);

// Get object list
HLLDOMOBJ hObjList;
L1DomGetObject(hProj, "Objects", &hObjList);

// Create report container and set properties

HLLDOMOBJ hObjReportContainer;

L1DomCreateSubobject (hObjList, @, _T("ReportContainer"),&hObjReportContainer);
L1DomSetProperty(hObjReportContainer, T("Position.Left"), _T("27000"));
L1DomSetProperty(hObjReportContainer, T("Position.Top"), _T("103500"));
L1DomSetProperty(hObjReportContainer, T("Position.Width"), _T("153400"));
L1DomSetProperty(hObjReportContainer, T("Position.Height"), _T("159500"));

// Get subobject list and create table inside it

HLLDOMOBJ hObjSubItems;

L1DomGetObject(hObjReportContainer, _T("SubItems"), & hObjSubItems);
HLLDOMOBJ hObjTable;

L1DomCreateSubobject(hObjSubItems, @, _T("Table"), &hObjTable);

// Get line list
HLLDOMOBJ hObjTableLines;
L1DomGetObject(hObjTable , _T("Lines"), &hObjTableLines);

// Get data line list
HLLDOMOBJ hObjTableData;
L1DomGetObject(hObjTableLines , _T("Data"), &hObjTableData);

// Create new line definition

HLLDOMOBJ hObjTableLine;

L1DomCreateSubobject(hObjTableData, @, _T("Line"), &hObjTableLine);
L1DomSetProperty(hObjTableLine, T("Name"), _T("My new table line"));

// Get header list
HLLDOMOBJ hObjTableHeader;
L1DomGetObject(hObjTableLines , _T("Header"), &hObjTableHeader);

// Create new line definition
HLLDOMOBJ hObjTableHeaderLine;
L1DomCreateSubobject (hObjTableHeader, @, _T("Line"), &hObjTableHeaderLine);

// Get field list for headers
HLLDOMOBJ hObjTableHeaderFields;
L1DomGetObject(hObjTableHeaderLine , _T("Fields"), &hObjTableHeaderFields);

// Get field list for data lines
HLLDOMOBJ hObjTableDataFields;
L1DomGetObject(hObjTableLine , _T("Fields"), &hObjTableDataFields);

TCHAR aczVarName[1024];

int nItemCount = 3;

for (int i=0; i < nItemCount; i++)
{

sprintf(aczVarName, "'Var%d'", i);

// Create new field in header and set properties
HLLDOMOBJ hObjHeaderField;
L1DomCreateSubobject (hObjTableHeaderFields, @, _T("Text"),
&hObjHeaderField);
L1DomSetProperty(hObjHeaderField, _T("Contents"), aczVarName);
L1DomSetProperty(hObjHeaderField, T("Filling.Style"), _T("1"));
L1DomSetProperty(hObjHeaderField, T("Filling.Color"),
_T("RGB(204,204,255)"));
L1DomSetProperty(hObjHeaderField, T("Font.Bold"), _T("True"));
L1DomSetProperty(hObjHeaderField, T("Width"), _T("50000"));

sprintf(aczVarName, "Var%d", i);

86

Programming Using the API Using the DOM-API (Professional/Enterprise Edition Only)

// Create new field in data line and set properties

HLLDOMOBJ hObjDataField;

L1DomCreateSubobject (hObjTableDataFields, @, _T("Text"),
&hObjDataField);

L1DomSetProperty(hObjDataField, T("Contents"), aczVarName);
L1DomSetProperty(hObjDataField, T("Width"), _T("50000"));
¥

// Save project
L1ProjectSave(hJob, NULL);
L1ProjectClose(hJob);
L1JobClose(hJob);

Setting the Project Parameters

The following code sets project parameters in an existing List & Label project for fax and sending mail:

HLLJOB hJob = L1JobOpen(-1);

L1ProjectOpen(hJob, LL_PROJECT_LIST, "c:\\simple.lst",
LL_PRJOPEN_CD_OPEN_EXISTING | LL_PRJOPEN_AM_READWRITE);

HLLDOMOBJ hProj;
L1DomGetProject(hJob, &hProj);

// Fax parameter:
L1DomSetProperty(hProj, _T("ProjectParameters.LL.FAX.RecipName.Contents"),
_T(""'sunshine agency'"));

L1DomSetProperty(hProj, _T("ProjectParameters.LL.FAX.RecipNumber.Contents"), _T("'555-555 555'"));

L1DomSetProperty(hProj,
T("ProjectParameters.LL.FAX.SenderCompany.Contents"),
_T("'combit'"));

L1DomSetProperty(hProj, T("ProjectParameters.LL.FAX.SenderName.Contents"),
_T("John Q. Public'"));

// Mail parameter:

L1DomSetProperty(hProj, _T("ProjectParameters.LL.MAIL.Subject.Contents"),
_T("'Your request'"));

L1DomSetProperty(hProj, _T("ProjectParameters.LL.MAIL.From.Contents"),
_T(""info@combit.net"'"));

L1DomSetProperty(hProj, _T("ProjectParameters.LL.MAIL.To.Contents"),
_T(""info@sunshine-agency.net'"));

// Save project
L1ProjectSave(hJob, NULL);
L1ProjectClose(hJob);
L1JobClose(hJob);

87

API Reference

Function Reference

6. API Reference

The following chapter lists all functions and callback notifications of List & Label.

6.1 Function Reference

LIAssociatePreviewControl

Syntax:

INT LlAssociatePreviewControl (HLLJOB hJob, HWND hWndControl, UINT nFlags);

Task:

Associates a LL job to a preview control.

Parameters:
hJob: List & Label job handle

hWhnd: window handle
nFlags:

Value

LL_ASSOCIATEPREVIEWV-
CONTROLFLAG DELETE -
ON_CLOSE

LL ASSOCIATEPREVIEW-
CONTROLFLAG_HANDLE -
IS_ATTACHINFO

LL_ASSOCIATEPREVIEW-
CONTROLFLAG PRV -
REPLACE

LL_ASSOCIATEPREVIEW-
CONTROLFLAG PRV -
ADD TO_CONTROL_STACK

LL_ASSOCIATEPREVIEW-
CONTROLFLAG PRV -
ADD TO_CONTROL_IN -
TAB

If necessary OR-ed.

Return Value:
Error code

Hints:

Meaning

Automatically delete preview file when preview is
closed

Informs the API, that the passed window handle is
a pointer to a structure containing drilldown
information

If LL ASSOCIATEPREVIEWCONTROLFLAG -
HANDLE IS ATTACHINFO is not set: the current
preview will be replaced by this preview

If LL ASSOCIATEPREVIEWCONTROLFLAG -
HANDLE IS ATTACHINFO is not set: this preview
is added to the current preview tab

If LL _ASSOCIATEPREVIEWCONTROLFLAG -
HANDLE IS ATTACHINFO is not set: this preview
is added to the current preview window in a new
tab

See chapter "Direct Print and Export From the Designer".

Example:

See chapter "Direct Print and Export From the Designer".

LICreateSketch

Syntax:

INT LlCreateSketch (HLLJOB hJob, UINT nObjType, LPCTSTR lpszObjName) ;

Task:

Creates a sketch that can later be displayed in the file selection dialogs. The color depth can be set using
LL OPTION_SKETCHCOLORDEPTH

Parameter:
hJob: List & Label job handle

nObjType: Project type

Value

Meaning

88

API Reference Function Reference

LL PROJECT LABEL for labels
LL_PROJECT CARD for cards
LL PROJECT LIST for lists

IpszObjName: Pointer to project's file name (with path) and file extension
Return Value:

Error code
Hints:

This API function can be used to create the sketches on-the-fly automatically, so that you do not need to
include the sketch files in your setup.

See also:
LISelectFileDlIgTitleEx

LIDbAddTable

Syntax:
INT L1DbAddTable (HLLJOB hJob, LPCTSTR pszTableID, LPCTSTR pszDisplayName) ;

Task:
Adds a table or schema for designing and printing. This table is available in the Designer and List & Label
can request it at print time.

Parameter:
hJob: List & Label job handle

pszTablelD: Unigue name of the table. It is returned by the LIPrintDbGetCurrentTable() function at print time.
If you pass an empty string or NULL, the table buffer will be deleted.

pszDisplayName: Name of the table as displayed in the Designer. If no name is given, the display name
and the unique name are identical.

Return Value:
Error code

Hints:
If a table name contains a

a schema will be used.
See the hints in chapter "Printing Relational Data".

Example:

HLLJOBhJob;
hJob = L1JobOpen (0) ;

L1DbAddTable (hJob, "", NULL);
L1DbAddTable (hJob, "Orders", NULL);
L1DbAddTable (hJob, "OrderDetails", NULL);
L1DbAddTable (hJob, " HumanResources.Employee", NULL); // schema info
<... etc ...>
LlJobClose(hJob)
See also:
LIDbAddTableSortOrder, LIDbAddTableRelation, LIPrintDbGetCurrentTable,

LIPrintDbGetCurrentTableSortOrder, LIPrintDbGetCurrentTableRelation

LIDbAddTableEx

Syntax:
INT L1DbAddTableEx (HLLJOB hJob, LPCTSTR pszTableID, LPCTSTR pszDisplayName, UINT nOptions);
Task:

Adds a table or schema for designing and printing and supports additional options. This table is available in
the Designer and List & Label can request it at print time.

Parameter:
hJob: List & Label job handle

89

API Reference Function Reference

pszTablelD: Unigue name of the table. It is returned by the L/PrintDbGetCurrentTable() function at print time.
If you pass an empty string or NULL, the table buffer will be deleted.

pszDisplayName: Name of the table as displayed in the Designer. If no name is given, the display name
and the unigue name are identical.

nOptions: a combination of one of the following flags:

Value Meaning

LL ADDTABLEOPT - Support stacked sort orders in the
SUPPORTSSTACKEDSORTO | designer. If the user chooses multiple
RDERS stacked sortings, these are returned tab

separated in
LIPrintDbGetCurrentlableSortOrder()

LL ADDTABLEOPT - Support the translation of filter expressions

SUPPORTSADVANCEDFILT | to native syntax. See the documentation for

ERING the LL QUERY EXPR2HOSTEXPRESSION
callback and

LIPrintDbGetCurrentlableFilter()

Return Value:
Error code

Hints:
If a table name contains a "." a schema will be used.

See the hints in chapter "Printing Relational Data".

Example:

HLLJOBhJob;
hJob = L1JobOpen (0) ;

L1DbAddTable (hJob, "", NULL);

L1DbAddTable (hJob, "Orders'", NULL);

L1DbAddTable (hJob, "OrderDetails", NULL);

L1DbAddTable (hJob, " HumanResources.Employee", NULL); // schema info
<... etc ...>

LlJobClose (hJob) ;

See also:

LIDbAddTableSortOrder, LIDbAddTableRelation, LIPrintDbGetCurrentTable,
LIPrintDbGetCurrentTableSortOrder, LIPrintDbGetCurrentTableRelation

LIDbAddTableRelation

Syntax:

INT L1DbAddTableRelation (HLLJOB hJob, LPCTSTR pszTableID, LPCTSTR pszParentTableID, LPCTSTR
pszRelationID, LPCTSTR pszRelationDisplayName) ;

Task:

This method can be used to define relations between the tables added via LIDbAddTable(). List & Label does
not directly distinguish between different relation types. You simply pass a relation and its ID, and you can
query the current relation later at print time using L/PrintDbGetCurrentTableRelation().

Parameter:
hJob: List & Label job handle

pszTablelD: |D of the child table. Must be identical to the ID passed in LIDbAddTable().
pszParentTablelD: |D of the parent table. Must be identical to the ID passed in LIDbAddTable().

pszRelationID: Unique ID of the table relation. It is returned by L/PrintDbGetCurrentlableRelation() at print
time. Must be unique within a print.

pszRelationDisplayName: Name of the table relation as displayed in the Designer and it is not saved to the
project file. If no name is given, the display name and the unique name are identical.

Return Value:
Error code

90

API Reference Function Reference

Hints:

See the hints in chapter "Printing Relational Data". Before using the call, the parent and child table must be passed
with LIDbAddTable().

Example:

HLLJOBhJob;
hJob = L1JobOpen (0) ;

L1DbAddTable (hJob, "Orders", NULL);
L1DbAddTable (hJob, "OrderDetails", NULL);

L1DbAddTableRelation (hJob, "OrderDetails", "Orders",
"Orders20rderDetails", NULL);
<... etc ...>

LlJobClose (hJob) ;
See also:

LIDbAddTable, LIDbAddTableSortOrder, LIPrintDbGetCurrentTable, LIPrintDbGet-CurrentTableSortOrder,
LIPrintDbGetCurrentTableRelation

LIDbAddTableRelationEx

Syntax:

INT L1DbAddTableRelationEx (HLLJOB hJob, LPCTSTR pszTableID, LPCTSTR pszParentTableID, LPCTSTR
pszRelationID, LPCTSTR pszRelationDisplayName, LPCTSTR pszKeyField, LPCTSTR pszParentKeyField);

Task:

This method can be used to define a relation between two tables added via LIDbAddTable(), especially for
drilldown support. List & Label does not directly distinguish between different relation types. You simply
pass a relation and its ID, and you can query the current relation later at print time using
LIPrintDbGetCurrentiableRelation().

Parameter:
hJob: List & Label job handle

pszTablelD: |D of the child table. Must be identical to the ID passed in LIDbAddTable().
pszParentTablelD: 1D of the parent table. Must be identical to the ID passed in LIDbAddTable().

pszRelationID: D of the table relation. It is returned by L/PrintDbGetCurrentiableRelation() at print time.
Must be unique within a print.

pszRelationDisplayName: Name of the table relation as displayed in the Designer and it is not saved to the
project file. If no name is given, the display name and the unique name are identical.

pszKeyField: Key field of the child table, multiple key fields can be added as tab separated list
pszParentKeyField: Key field of the parent table, multiple key fields can be added as tab separated list

Return Value:
Error code

Hints:
See the hints in chapter "Printing Relational Data". Before using the call, the parent and child table must be
passed with LIDbAddTable().

Example:

See chapter "Direct Print and Export From the Designer".

See also:

LIDbAddTable, LIDbAddTableSortOrder, LIPrintDbGetCurrentTable, LIPrintDbGetCurrentTableSortOrder,
LIPrintDbGetCurrentTableRelation

LIDbAddTableSortOrder

Syntax:

INT L1DbAddTableSortOrder (HLLJOB hJob, LPCTSTR pszTableID, LPCTSTR pszSortOrderID, LPCTSTR
pszSortOrderDisplayName) ;

Task:

Defines available sort orders for the tables added via LIDbAddTable(). Each sorting has its unique ID that
can be queried using L/IPrintDbGetCurrentiableSortOrder() at print time.

91

API Reference Function Reference

Parameter:
hJob: List & Label job handle

pszTablelD: Table ID to which this sort order applies. Must be identical to the ID passed in LIDbAddTable().

pszSortOrderID: Unique ID of the table sort order. It is returned by L/IPrintDbGetCurrentlableSortOrder() at
print time.

pszSortOrderDisplayName: Name of the table sort order as displayed in the Designer. If no name is given,
the display name and the unique name are identical.

Return Value:
Error code

Hints:

See the hints in chapter "Printing Relational Data". Before using the call, the table must be passed with
LIDbAddTable().

Example:
HLLJOB hJob;
hJob = L1lJobOpen (0) ;

L1DbAddTable (hJob, "Orders'", NULL);
L1DbAddTableSortOrder (hJob, "Orders", "Name ASC", "Name [+]");
<... etc ...>

Ll1JobClose (hJob) ;

See also:

LIDbAddTable, LIDbAddTableRelation, LIPrintDbGetCurrentTable, LIPrintDbGetCurrentTableSortOrder,
LIPrintDbGetCurrentTableRelation

LIDbAddTableSortOrderEx

Syntax:

INT L1DbAddTableSortOrderEx (HLLJOB hJob, LPCTSTR pszTableID, LPCTSTR pszSortOrderID, LPCTSTR
pszSortOrderDisplayName, LPCTSTR pszField);

Task:

Defines available sort orders for the tables added via LIDbAddTable(). Each sorting has its unique ID that
can be queried using L/PrintDbGetCurrentiableSortOrder() at print time. Additionally the fields that are
relevant for the sorting can be passed separated by tabs for further use in the function L/GetUsed/dentifiers().

Parameter:
hJob: List & Label job handle
pszTablelD: Table ID to which this sort order applies. Must be identical to the ID passed in LIDbAddTable().

pszSortOrderID: Unique ID of the table sort order. It is returned by L/PrintDbGetCurrentlableSortOrder() at
print time.

pszSortOrderDisplayName: Name of the table sort order as displayed in the Designer. If no name is given,
the display name and the unique name are identical.

pszField: List of fields that are relevant for the sorting (separated by tabs) if they should be regarded in the
function L/IGetUsedldentifiers().

Return Value:
Error code
Hints:

See the hints in chapter "Printing Relational Data". Before using the call, the table must be passed with
LIDbAddTable().

Example:

HLLJOBhJob;
hJob = L1JobOpen (0) ;

L1DbAddTable (hdob, "Orders", NULL);

L1DbAddTableSortOrderEx (hJob, "Orders", "Name ASC", "Name [+]",
"Orders.Name") ;
<... etc ...>

LlJobClose (hJob) ;

92

API Reference Function Reference

See also:

LIDbAddTableSortOrder, LIDbAddTable, LIDbAddTableRelation, LIPrintDbGetCurrentTable, LIPrintDbGet-
CurrentTableSortOrder, LIPrintDbGetCurrentTableRelation

LIDbSetMasterTable

Syntax:
INT LlDbSetMasterTable (HLLJOB hJob, LPCTSTR pszTablelD);

Task:
If the master data is passed as variables, List & Label needs to know which table is the "master" table in
order to be able to offer the suitable sub-tables in the table structure window. If you set the master table
name using this method, all tables related to this table can be inserted at the root level of the report
container object.

Parameter:

hJob: List & Label job handle

pszTablelD: 1D of the table which is used as the "master" table. Must be identical to the ID passed in
LIDbAddTable().

Return Value:
Error code

Hints:

See the hints in chapter "Printing Relational Data". Before using the call, the table must be passed with
LIDbAddTable().

Example:

HLLJOBhJob;
hJob = L1JobOpen (0) ;

L1DbAddTable (hJob, "Orders'", NULL);
LlDbSetMasterTable (hJob, "Orders");
<... etc ...>

LlJobClose (hJob) ;

See also:

LIDbAddTable, LIDbAddTableRelation, LIPrintDbGetCurrentTable, LIPrintDbGetCurrentTableSortOrder,
LIPrintDbGetCurrentTableRelation

LIDebugOutput
Syntax:
void LlDebugOutput (INT nIndent, LPCTSTR pszText);
Task:
Prints the text in the debug window of the Debwin Tool or — depending on the parameter passed to
LiSetDebug() - to the log file.
Parameter:
nindent: Indentation of the following line(s)
pszText: Text to be printed
Hints:
The indentation is very handy for tracing calls to sub-procedures, but you need to make sure that every call
with an indentation of +1 is matched by a call with the indentation of -1!
Example:

HLLJOB hJob;

L1SetDebug (LL DEBUG CMBTLL) ;
L1lDebugOutput (+1, "Get version number:");
hJob = L1JobOpen (0) ;

v = LlGetVersion(VERSIONiMAJOR);
L1lJobClose (hJob) ;

L1lDebugOutput (-1,"...done");

93

API Reference Function Reference

prints the following to the debug screen:

Get version number:
Q@L1JobOpen (0) =1
@L1GetVersion (1)=31
@L1JobClose (1)

...done

See also:
LISetDebug, Debwin

LIDefineChartFieldExt

Syntax:

INT LlDefineChartFieldExt (HLLJOB hJob, LPCTSTR lpszName, LPCTSTR lpszCont, INT lPara, LPVOID
lpPara);

Task:
Defines a chart field and its contents.

Parameter:
hJob: List & Label job handle

IpszName: Pointer to a string with the name of the field
IpszCont: Pointer to a string with the contents of the field
IPara: Field type (LL_TEXT, LL NUMERIC, ...)

IpPara: For future extensions, must be NULL.

Return Value:
Error code

Hints:
Please note the general hints in the section "Variables and Fields in List & Label".

See also:
LIDefineChartFieldStart

LIDefineField

Syntax:
INT LlDefineField (HLLJOB hJob, LPCTSTR lpszName, LPCTSTR lpszCont);

Task:
Defines a list/table field and its contents.

Parameter:
hJob: List & Label job handle

IpszName: Pointer to a string with the name of the field
IpszCont: Pointer to a string with the contents of the field

Return Value:
Error code

Hints:
Please note the general hints in the section "Variables and Fields in List & Label".

This function defines a text field and can be mixed with the other L/DefineField...() functions.
LIDefineField(...) is identical to LIDefineFieldExt(..., LL TEXT, NULL).
List & Label predefines the following fields:

Field Meaning

LL.CountDataThisPage Numerical, footer field, defined data
records per page

LL.CountData Numerical, footer field, defined data

records total

94

API Reference Function Reference

LL.CountPrintedDataThisPage Numerical, footer field,
printed data records per page

LL.CountPrintedData Numerical, footer field, printed data
records total

LL.FCountDataThisPage Numerical, footer field, defined data
records per page

LL.FCountData Numerical, footer field, defined data

records total
LL.FCountPrintedDataThisPage Numerical, footer field, printed data

records per page
LL.FCountPrintedData Numerical, footer field,

printed data records total

The difference between "defined" and "printed" data records is that the user can apply a record filter to the
table so that the "defined" numbers increase with every data record sent from the program, but not
necessarily the "printed" ones.

Example:

HLLJOB hJob;

hJob = L1JobOpen (0) ;
LlDefineFieldStart (hJob) ;

LlDefineField (hJob, "Name", "Smith");

LlDefineField (hJob, "Forename", "George"):;

LlDefineFieldExt (hJob, "Residence", "Cambridge", LL TEXT, NULL);
LlDefineFieldExt (hJob, "Postal Code", "*CB5 9NB*", LL BARCODE 30F9);
<... etc ...>

LlJobClose (hJob) ;

See also:

LIDefineFieldStart, LIDefineFieldExt, LIDefineFieldExtHandle

LIDefineFieldExt

Syntax:

Task:

INT LlDefineFieldExt (HLLJOB hJob, LPCTSTR lpszName, LPCTSTR lpszCont, INT lPara, LPVOID
lpPara);

Defines a list/table field and its contents.

Parameter:

hJob: List & Label job handle

IpszName: Pointer to a string with the name of the field

IpszCont: Pointer to a string with the contents of the field

IPara: Field type (LL_TEXT, LL NUMERIC, ...), if necessary OR-ed (see below).

IpPara: For future extensions, must be NULL.

Return Value:

Hints:

Error code

Please note the general hints in the section "Variables and Fields in List & Label".
List & Label predefines the fields listed in LIDefineField|).

IPara OR-ed with LL TABLE FOOTERFIELD supplies field definitions only for the list footer. The footer is
dynamically linked to the list body and is suitable for, e.g., dynamic calculations as the line for totals or sub-
totals.

|Para OR-ed with LL TABLE HEADERFIELD supplies field definitions only for the list header.

|Para OR-ed with LL TABLE GROUPFIELD supplies field definitions only for the group.

IPara OR-ed with LL_ TABLE GROUPFOOTERFIELD supplies field definitions only for the group footer.
IPara OR-ed with LL_TABLE BODYFIELD supplies field definitions only for the list body.

If none of these flags is used, the fields appear in all field selection dialogs in the table object.

95

API Reference Function Reference

Example:

HLLJOB hJob;

hJob = L1JobOpen (0) ;
LlDefineFieldStart (hJob) ;

LlDefineField (hJob, "Name", "Smith");
LlDefineField (hJob, "Forename", "George");
LlDefineFieldExt (hJob, "Residence", "Cambridge", LL_TEXT, NULL);

LlDefineFieldExt (job, "Number of entries per page",
"1", LL_TABLE_FOOTERFIELD Or LL TEXT, NULL)
LlDefineFieldExt (hJob, "Postal code",
"*CB5 9NB*", LL BARCODE 30F9);
LlDefineFieldExt (hJob, "Photo",
"c:\\photos\\norm.bmp", LL DRAWING) ;
<... etc ...>
LlJobClose (hJob) ;

See also:

LIDefineFieldStart, LIDefineField, LIDefineFieldExtHandle

LIDefineFieldExtHandle

Syntax:
INT LlDefineFieldExtHandle (HLLJOB hJob, LPCTSTR lpszName, HANDLE hContents, INT lPara, LPVOID
lpPara) ;

Task:
Defines a list field and its (handle) contents.

Parameter:

hJob: List & Label job handle

IpszName: Pointer to a string with the name of the field

hContents: Handle to an object of type HMETAFILE, HENHMETAFILE, HICON or HBITMAP

IPara: [L_ DRAWING HMETA, LL DRAWING HEMETA, LL_ DRAWING HICON or LL_ DRAWING HBITMAP

IpPara: For further extensions, must be NULL.

Return Value:

Hints:

Error code

Please note the general hints in the section "Variables and Fields".
This function defines a text field and can be mixed with the other L/DefineField...() functions.
List & Label predefines the fields listed in LIDefineField|).

The metafile handle must be valid as long as it is needed, that is during the entire layout definition or until
after LIPrintFields() or LIPrint() has finished.

After use the handle can or should be deleted with the normal API function.

Example:

HLLJOB hJob;
HMETAFILE hMeta;
HDC hMetaDC;
INT i;
hMetaDC = CreateMetaFile (NULL); // Fieberkurve
selectObject (hMetaDC,GetStockObject (NULL_PEN)) ;
Rectangle (hMetaDC, 0, 0, LL META MAXX, LL METY MAXY);
for (i = 0; 1 < 10; ++1)
{
MoveTo (hMetaDC, 0,MulDiv (i, LL META MAXY, 10));
LineTo (hMetaDC,MulDiv (i, LL META MAXX, 100),
MulDiv (i, LL META MAXY, 10);
}
MoveTo (hMetaDC, 0, MulDiv(((100*i) & 251) % 100, LL_META_MAXY,IOO));
for (1 = 0; i < 10; ++1i)
LineTo (hMetaDC,MulDiv (i, LL META MAXX, 10),
MulDiv (((100*i) & 251) % 100, LL META MAXY, 100));
hMeta = CloseMetaFile (hMetaDC) ;

hJob = L1lJobOpen (0) ;
LlDefineFieldStart (hJob) ;

96

API Reference Function Reference

LlDefineField (hJob, "Name", "Normalverbraucher");
LlDefineField (hJdob, "Vorname", "Otto");
LlDefineFieldExt (hJob, "Ort", "Konstanz", LL_TEXT, NULL);

LlDefineFieldExtHandle (hJob, "Erfolgs-Chart", hMeta,
LL_DRAWING_HMETA, NULL);

<... etc ...>

LlJobClose (hJob) ;

DeleteObject (hMeta) ;

See also:
LIDefineFieldStart, LIDefineField, LIDefineFieldExt

LIDefineFieldStart
Syntax:
void LlDefineFieldStart (HLLJOB hJob);
Task:
Empties List & Label's internal field buffer in order to delete old field definitions.
Parameter:
hJob: List & Label job handle
Hints:
The hints for LIDefineVariableStart() also apply to this function.
If the function L/Print/sFieldUsed() is used in your application, L/DefineFieldStart() may not be used after the
call to LIPrint/WithBox/Start(), otherwise the "used" flag will be reset and L/Print/sFieldUsed() returns always
FALSE. We recommend the usage of L/GetUsedldentifiers anyway.
Important: This function must not be called within the print loop!
Example:
HLLJOB hJob;
hJob = L1lJobOpen (0) ;
LlDefineFieldStart (hJob) ;
LlDefineField (hJob, "Name", "Smith");
LlDefineField (hJob, "forename", "George");
<... etc ...>
L1lJobClose (hJob) ;
See also:
LIDefineField, LIDefineFieldExt, LIDefineFieldExtHandle
LiIDefineLayout
Syntax:
INT LlDefinelLayout (HLLJOB hJob, HWND hWnd, LPCTSTR lpszTitle, UINT nObjType, LPCTSTR
lpszObjName) ;
Task:
Calls the interactive Designer that will be displayed as a modal pop-up window overlapping your application
window.
Parameter:

hJob: List & Label job handle

hWhnd: Handle of the application window which will be disabled while the Designer is being displayed.
IpszTitle: Window title

nObjType: Project type

Value Meaning
LL PROJECT LABEL for labels
LL PROJECT CARD for cards
LL PROJECT LIST for lists

if necessary OR-ed with:

Value Meaning

97

API Reference

Function Reference

LL FIXEDNAME Deletes the menu items 'new' and 'load'
(preferred: L/IDesignerProhibitAction())
Deletes the menu item 'save as' (preferred:
LIDesignerProhibitAction())

No file name of the current project in List &

Label's main window title

LL NOSAVEAS

LL NONAMEINTITLE

IpszObjName: File name of the desired object with file extension

Return Value:

Error code
Hints:
The window handle is used to deactivate the calling program.
If this is not desired or possible, NULL can also be passed. In this case the calling program is responsible
for closing the layout editor, should the user abort the main program. This is not recommended.
When the List & Label layout Designer is minimized, the calling program is also automatically minimized;
when the Designer is subsequently restored, List & Label is also restored.
Example:
HLLJOBhJob;
hJob = L1JobOpen (0) ;
LlDefineVariableStart (hJob) ;
LlDefineVariable (hJob, "Name", "Smith");
LlDefineVariable (hJdob, "forename", "George");
LlDefineVariable (hJob, "PIN", "40|08150|77500",
LL_BARCODE_EANIB, NULL) ;
LlDefineLayout (hJob, hWndMain, "Test", LL PROJECT LABEL, "test.lbl")
LlJobClose (hJob) ;
See also:

LIDesignerProhibitAction, LISetOption, LISetFileExtensions

LIDefineSumVariable

Syntax:

INT LlDefineSumVariable (HLLJOB hJob, LPCTSTR lpszName, LPCTSTR lpszCont);
Task:

Defines a sum variable's contents.
Parameter:

hJob: List & Label job handle
IpszName: Pointer to a string with the name of the variable
IpszCont: Pointer to a string with the contents of the variable
Return Value:
Error code
Hints:
The field content is interpreted as numerical value.

Use of this function usually conflicts with a user who can edit a layout, as the sum variable will not have the

value he expects.

Example:
HLLJOB hJob;

hJob = L1lJobOpen (0) ;

<... etc ...>

LlDefineSumVariable (hJob, "@SumO1", "14");
<... etc ...>

L1lJobClose (hJob) ;

See also:
LIGetSumVariableContents

98

API Reference

Function Reference

LIDefineVariable
Syntax:
INT LlDefineVariable (HLLJOB hJob, LPCTSTR lpszName, LPCTSTR lpszCont);
Task:
Defines a variable of the type LL_TEXT and its contents.
Parameter:

hJob: List & Label job handle
IpszName: Pointer to a string with the name of the variable
IpszCont: Pointer to a string with the contents of the variable

Return Value:

Error code
Hints:
Please note the general hints in the section "Variables and Fields in List & Label".
This function defines a text variable and can be mixed with the other L/DefineVariable...() functions.
LIDefineVariable(...) is identical to L/IDefineVariableExt(..., LL_TEXT, NULL).
List & Label predefines the following variables:
Field Meaning
LL.CountDataThisPage Numerical, footer field, defined data
records per page
LL.CountData Numerical, footer field, defined data
records total
LL.CountPrintedDataThisPage Numerical, footer field, printed data
records per page
LL.CountPrintedData Numerical, footer field, printed data
records total
LL.SortStrategy String, sort expression
LL.FilterExpression String, filter expression
The difference between "defined" and "printed" data records is that the user can apply a filter condition to
the data records so that with every data record sent from the program the "defined" numbers increase, but
not necessarily the "printed" ones (the latter values are only increased if the data record has been printed,
that is, matches the filter condition).
Example:
HLLJOB hdJob;
hJob = L1JobOpen (0) ;
LlDefineVariableStart (hJob) ;
LlDefineVariable (hJob, "Name", "Smith");
LlDefineVariable (hJob, "forename", "George");
LlDefineVariableExt (hJob, "residence", "Cambridge, LL TEXT, NULL);
LlDefineVariableExt (hJob, "Postal Code", "*CB1*",
LLiBARCODE73OF9, NULL) ;
<... etc ...>
LlJobClose (hJob) ;
See also:
LIDefineVariableStart, LIDefineVariableExt, LIDefineVariableExtHandle, LIGetVariableContents,
LIGetVariableType
LIDefineVariableExt
Syntax:
INT LlDefineVariableExt (HLLJOB hJob, LPCTSTR lpszName, LPCTSTR lpszCont, INT lPara, LPVOID
lpPara);
Task:

Defines a variable and its contents.

99

API Reference Function Reference

Parameter:
hJob: List & Label job handle

IpszName: Pointer to a string with the name of the variable
IpszCont: Pointer to a string with the contents of the variable
IPara: Variable type (LL TEXT, LL NUMERIC, ...)

IpPara: For future extensions, must be NULL.

Return Value:
Error code

Hints:
Please note the general hints in the section "Variables and Fields in List & Label".

This function can be mixed with the other L/DefineVariable...()-functions.
The variables predefined by List & Label are listed within the description of L/DefineVariable().

Example:

hJob = L1JobOpen (0) ;

LlDefineVariableStart (hJob) ;

LlDefineVariableExt (hJob, "City", "Washington", LL TEXT, NULL);

LlDefineVariableExt (hJob, "ZIP Code", "*90206*",
LL_BARCODE_30F9, NULL) ;

LlDefineVariableExt (hJob, "Photo", "i.bmp", LL DRAWING, NULL);

Ll1JobClose (hJob) ;

See also:

LIDefineVariableStart, LIDefineVariable, LIDefineVariableExtHandle, LIGetVariableContents,
LIGetVariableType

LIDefineVariableExtHandle

Syntax:

INT LlDefineVariableExtHandle (HLLJOB hJob, LPCTSTR lpszName, HANDLE hContents, INT lPara,
LPVOID lpPara);

Task:
Defines a variable and its contents.

Parameter:
hJob: List & Label job handle

IpszName: Pointer to a string with the name of the variable

hContents: Handle to an object of type:HMETAFILE, HENHMETAFILE,HICON or HBITMAP

IPara: L DRAWING HMETA, LL DRAWING HEMETA, LL DRAWING HICON or LL_DRAWING HBITMAP
IpPara: For future extensions, must be NULL.

Return Value:
Error code

Hints:
Please note the general hints in the section "Variables and Fields in List & Label".

This function can be mixed with the other L/DefineVariable...()-functions.

The handle must be valid as long as it is needed, that is during the entire layout definition or until after
LIPrintFields() or LIPrint() return.

After use the handle can or should be deleted with the normal API function.

Example:

HLLJOB hdJob;
HMETAFILE hMeta;
HDC hMetaDC;
INT i;

hMetaDC = CreateMetaFile (NULL); // curve

SelectObject (hMetaDC, GetStockObject (NULL PEN)) ;
Rectangle (hMetaDC, 0, 0, LL META MAXX, LL META MAXY);

100

API Reference

Function Reference

for (i = 0; 1 < 10;++ 1)

{

MoveTo (hMetaDC, 0, MulDiv (i, LL META_ MAXY, 10));
LineTo (hMetaDC, MulDiv (i, LL META MAXX, 100), MulDiv(,
}
MoveTo (hMetaDC, 0, MulDiv(((100*i) & 251) % 100, LL_META MAXY,

for (i = 0; 1 < 10;++ 1)

LineTo (hMetaDC, MulDiv (i, LL_META MAXX, 10),

MulDiv (((100*i) & 251) % 100, LL META MAXY, 100));
hMeta = CloseMetaFile (hMetaDC) ;
hJob = L1lJobOpen (0) ;
LlDefineVariableStart (hJob) ;
LlDefineVariable (hJdob, "Name", "Smith");
LlDefineVariable (hJdob, "Forename", "George");
LlDefineVariableExtHandle (hJob, "Chart", hMeta,

LL DRAWING META, NULL);

LlDefineVariableExt (hJob, "Postal code", "*CB5 4RB*",

L1 _BARCODE 30F9, NULL);
<... etc ...>
LlJobClose (hJob) ;
DeleteObject (hMeta) ;

See also:

LIDefineVariableStart, LIDefineVariable, LIDefineVariableExt,
LIGetVariableContents, LIGetVariableType

LIDefineVariableStart

LL META MAXY,

10);

100)) ;

Syntax:
void LlDefineVariableStart (HLLJOB hJob) ;
Task:
Empties List & Label's internal variable buffer in order to delete old definitions.
Parameter:
hJob: List & Label job handle
Hints:
Does not necessarily have to be called. However, as with every L/DefineVariable...() the internal variable list
is checked for a variable which is already available with the same name and type, this can be somewhat
accelerated with this function. Otherwise you only need to redefine the variables whose contents change
as the old contents of the variable are " over-written" ; the contents of the remaining variables remain the
same.
If you use L/PrintlsVariableUsed(), LIDefineVariableStart) may not be called after the invocation of
LIPrint/WithBox/Start(), otherwise LIPrint/sVariable Used() will always return FALSE.
Important: This function must not be called within the print loop!
Example:
HLLJOBhJob;
hJob = L1JobOpen (0) ;
LlDefineVariableStart (hJob) ;
LlDefineVariable (hJob, "Name", "Smith");
LlDefineVariable (hJob, "Forename", "George");
<...etc ...>
LlDefineVariable (hJob, "Forename", "James");
<... etc ...>
LlJobClose (hJob) ;
See also:
LIDefineVariable, LIDefineVariableExt, LIDefineVariableExtHandle, LIGetVariableContents,
LIGetVariableType

LIDesignerAddAction

Syntax:

INT LlDesignerAddAction (HLLJOB hJob, UINT nID, UINT nFlags,
pszMenuHierarchy, LPCTSTR pszTooltipText, UINT nIcon,

LPCTSTR pszMenuText, LPCTSTR

LPVOID pvReserved) ;

101

API Reference Function Reference

Task:

Extends the Designer's menu and optionally the toolbar of the Designer. In contrast to using the callback
LL CMND MODIFYMENU a command button with a selectable icon can be added to the toolbar here. This
command must be called before L/DefinelLayouty).

Parameter:
hJob: List & Label Job-Handle

nID: Menu-ID for the new action to be added. This ID is passed by the callback LL_CMND_SELECTMENU,
when the user selects the corresponding menu item or toolbar button. User defined IDs should be in the
range between 10100 and 10999.

nFlags: Combination (ORed) of the following flags:

Value Meaning

LLDESADDACTIONFLAG ADD TO Add a command button to the toolbar in
_TOOLBAR addition to the menu item.
LLDESADDACTION MENUITEM A The menu item is added behind the entry in
PPEND pszMenuHierarchy.

LLDESADDACTION _MENUITEM | The menu item is added in front of the entry
NSERT pszMenuHierarchy.

As well as an optional Keycode as a Shortcut and a combination of the following flags as modifiers:

Value Meaning
LLDESADDACTION ACCEL CONT Keyboard shortcut is CTRL+Keycode.
ROL

LLDESADDACTION _ACCEL SHIFT ~ Keyboard shortcut is SHIFT +Keycode.
LLDESADDACTION ACCEL ALT Keyboard shortcut is ALT+Keycode.

LLDESADDACTION ACCEL VIRTK Should always be set.
EY

pszMenuText:Menu text without a keyboard shortcut (this will be added automatically). You can however,
use the "&" symbol to allocate the shortcuts for menu navigation. Use "." as a hierarchy separator to create
submenu items. For example, in order to create a Menu '"Draft" with a sub-point "Invoices", use
'Draft.Invoices" as a menu text.

pszMenuHierarchy:Menu hierarchy of the new menu item. The description is given in the form of
"<Level>.<Level>..."whereby "Level" is always the 0-based index of the menu entry. For example, to insert
a new entry in the first place in the "Edit" menu, use "1.0" and LLDESADDACTION _MENUITEM _INSERT.

pszTooltipText:Text for the tooltip on the toolbar command button. Will only be evaluated if the flag
LLDESADDACTIONFLAG _ADD TO TOOLBAR is set. May be NULL.

nlcon: Icon-lD for the command button. Wil only be evaluated if the flag
LLDESADDACTIONFLAG _ADD TO TOOLBAR is set. Use the program IconSelector.exe (in the Tools
directory) to see the list of available icons with their IDs.

pvReserved: For future extensions, must be NULL.

Return Value:
Error code

Hints:
To execute the actual action, the LL_ CMND_SELECTMENU-Callback has to be processed.

See also:
LIDefinelLayout

LIDesignerFileOpen

Syntax:
INT LlDesignerFileOpen (HLLJOB hJob, LPCTSTR pszFileName, UINT nFlags);

102

API Reference

Function Reference

Task:

Opens the specified project file when the Designer is open.

Parameter:
hJob: List & Label Job-Handle

pszFileName: Project file name including path and file extension

nFlags: Combination (ORed) of a flag from the following two groups at any one time:

Value

LL DESFILEOPEN_OPEN_EXISTIN
G

LL_DESFILEOPEN _CREATE -
ALWAYS

LL DESFILEOPEN _CREATE NEW

LL DESFILEOPEN OPEN_ALWAYS

LL DESFILEOPEN OPEN_IMPORT

Value

LL DESFILEOPENFLAG -
SUPPRESS SAVEDIALOG

LL DESFILEOPENFLAG -
SUPPRESS SAVE

LL DESFILEOPENFLAG DEFAULT

Meaning

File must already exist, otherwise an Error
Code will be returned.

File will always be newly created. If file
already exists, then file content will be
deleted.

File will always be newly created if not
already existing. If file already exists, an
error code will be returned.

If file exists, it will be opened, otherwise
new file will be created.

Imports an existent file into an already
opened project.

Meaning

The currently opened project will be
automatically saved without user interaction
before loading a new project.

The currently opened project will be closed
automatically without being saved. All
changes after the last save will therefore be
lost!

The currently opened project will be saved
or closed as selected by the user - if
necessary before the new project is loaded.

Return Value:
Error code

Hints:

The function can only be used within a designer event. Typical

use is

LIDesignerAddAction() in order to automate certain application workflows.

See also:
LIDesignerFileSave

LIDesignerFileSave

in connection with

Syntax:

INT LlDesignerFileSave (HLLJOB hJob, UINT nFlags);

Task:

Saves the currently opened project file when the Designer is open.

Parameter:
hJob: List & Label Job-Handle

nFlags: For future extension, must be "0" (LL_DESFILESAVE_DEFAULT).

Return Value:
Error code

103

API Reference Function Reference

Hints:

The function can only be used within a designer event. Typical use is in connection with
LIDesignerAddAction() in order to automate certain application workflows.

See also:
LIDesignerFileOpen

LIDesignerGetOptionString

Syntax:
INT LlDesignerGetOptionString (HLLJOB hJob, INT nMode, LPTSTR pszBuffer, UINT nBufSize);

Task:
Queries various settings when the Designer is open.

Parameter:
hJob: List & Label Job-Handle

nMode: Option index, see LIDesignerSetOptionString()
pszBuffer: Buffer for return value, may be NULL
nBufSize: Size of buffer

Return value:
Error code or buffer size needed, if pszBuffer is NULL.

Hints:
Valid values for the mode parameter can be found at the description of L/DesignerSetOptionString().

See chapter "Important Remarks on the Function Parameters of DLLs" concerning the buffer return value.

See also:
LIDesignerSetOptionString

LIDesignerinvokeAction

Syntax:
INT LlDesignerInvokeAction (HLLJOB hJob, INT nMenulndex) ;

Task:

Activates the action menu item if the Designer is open.
Parameter:

hJob: List & Label Job-Handle

nMenulndex: Index of function. You can find the corresponding IDs in the "MenulD.txt" file in your List &
Label installation.

Return Value:
Error code

Hints:

If the function is to be utilized, it must be used within a designer event. Typical use is in connection with
LIDesignerAddAction() in order to automate certain application workflows.

See also:
LIDefinelLayout, LIDesignerAddAction

LiDesignerProhibitAction

Syntax:
INT LlDesignerProhibitAction (HLLJOB hJdob, INT nMenulndex) ;

Task:
Hiding of menu items in the Designer (and their respective toolbar buttons).

104

API Reference

Function Reference

Parameter:
hJob: List & Label job handle

nMenulndex: Menu function index

The function index can have the following values:

Value
0

LL SYSCOMMAND_-
MINIMIZE

LL SYSCOMMAND_-
MAXIMIZE

other

Return Value:
Error code

Hints:

If this function is used, it must be called before the function L/Definelayout{).

Meaning

All function exclusions are deleted, the
menu item list is reset (default menu is
restored). This is automatically called by
LIJobOpen() and LIJobOpenl CID(). This
function needs to be used for several
LIDefinelLayout() calls with different lock
entries, otherwise the lock entries will be
added.

The Designer window cannot be minimized
(iconized).

The Designer window cannot be
maximized.

The menu IDs of the deleted menus can be
given here. You can find the corresponding
IDs in the "MenulD.txt" file in your List &
Label installation.

This call can be made several times in turn for different function index values as the entries are added to a
lock-entry list which is evaluated at the call of L/DefineLayout(). They can even be called during the
LL CMND MODIFYMENU callback.

If ribbon IDs are specified, the LL_OPTION_RIBBON_FORCEENABLED option can also be used to force the
ribbon; otherwise, check whether these IDs would also affect the classic menu. Pass negative ribbon IDs

to enable them again.

Example:

HLLJOBhJob;
hJob = L1JobOpen (0) ;

LlDefineVariableStart (hJob) ;

LlDefineVariable (hJob, "Name", "Smith");
LlDefineVariable (hJob, "Forename", "George");

LlDefineVariable (hJob, "PIN",

LlDesignerProhibitAction (hJob, LL SYSCOMMAND MAXIMIZE) ;
LlDesignerProhibitAction (hJob, LL SYSCOMMAND MINIMIZE) ;
LlDefineLayout (hJob, hWndMain, "Test", LL PROJECT LABEL, "test.lbl")

L1lJobClose (hJob) ;
See also:

LIDefinelLayout, LIDesignerProhibitEditingObject, LIDesignerProhibitFunction

LIDesignerProhibitEditingObject

"40108150]77500", LL BARCODE_ EAN13, NULL);

Syntax:

INT LlDesignerProhibitEditingObject (HLLJOB Job, LPCTSTR pszObject);

Task:

Prohibits the editing of the passed object.

Parameter:
hJob: List & Label job-handle

pszO0bject: Object name

Return Value:
Error code

105

API Reference Function Reference

Hints:
With NULL or " the list of prohibited objects will be deleted.
Example:
HLLJOBhJob;
hJob = L1lJobOpen (0) ;
LlDesignerProhibitEditingObject (hJob, "MyText");
LlJobClose (hJob) ;
See also:

LIDefineLayout, LIDesignerProhibitAction, LIDesignerProhibitFunction

LIDesignerProhibitFunction

Syntax:

INT LlDesignerProhibitFunction (HLLJOB hJob, LPCTSTR pszFunction);
Task:

Hides the given function in the formula wizard. Must be called before any functions are evaluated.
Parameter:

hJob: List & Label job handle
pszFunction: Function name.

Return Value:
Error code

Hints:
If you pass NULL or an empty string, the list of functions to be hidden will be reset.

Example:

HLLJOBhJob;
hJob = L1JobOpen (0) ;

LlDesignerProhibitFunction (hJob, "");
LlDesignerProhibitFunction (hJob, "CStr$");

L1lJobClose (hJob) ;

See also:
LIDefinelLayout, LIDesignerProhibitAction, LIDesignerProhibitEditingObject

LIDesignerRefreshWorkspace

Syntax:
INT LlDesignerRefreshWorkspace (HLLJOB hdJob) ;

Task:
Activates an update of all tool windows, menu items etc. in the Designer. Use this function to ensure that
the Designer immediately shows all the changes made to the object model using DOM within the open
Designer.

Parameter:

hJob: List & Label Job-Handle

Return code:
Error code

Hints:

This function can only be used within a designer event. It is typically used in connection with
LIDesignerAddAction().

See also:
LIDefineLayout, LIDesignerAddAction

106

API Reference Function Reference

LIDesignerSetOptionString

Syntax:
INT LlDesignerSetOptionString (HLLJOB hJob, INT nMode, LPCTSTR pszValue);
Task:
Defines various settings when the Designer is open.
Parameter:

hJob: List & Label Job-Handle
nMode: The following values are possible as function index:
LL_DESIGNEROPTSTR_PROJECTFILENAME

The name of the project currently opened. If you have created a new file through an action, it can be named
in this way. Otherwise corresponds to a "Save as...".

LL_DESIGNEROPTSTR_ WORKSPACETITLE

Assigns the window title in the Designer. You can use the format placeholder %s within the text to show
the project name.

LL_DESIGNEROPTSTR_ PROJECTDESCRIPTION

Assigns the project description that will also be shown in "Open file" dialog.
pszValue: new value
Return value:
Error code
See also:
LIDesignerGetOptionString

LIDIgEditLineEx

Syntax:

INT L1DlgEditLineEx (HLLJOB Job, HWND hWnd, LPTSTR pszBuffer, UINT nBufSize, UINT nParaTypes,
LPCTSTR pszTitle, BOOL bTable, LPVOID pReserved);

Task:

This function is only available in the Enterprise edition! Starts the List & Label formula wizard independently
of the Designer. This means that List & Label formulas can also be used at points in the application that are
independent of printing.

Parameter:
hJob: List & Label job handle

hWnd: Window handle of the calling program
pszBuffer: Buffer for return value
nBufSize: Size of buffer
nParaTypes: Expected return type. One or several ORed data type constants (e.g. LL_TEXT, LL_DATE)
pszTitle: Window title. Note that the title will be preceded by the word "Edit".
bTable: Defines whether only variables (FALSE) or fields (TRUE) will be available
pReserved: Reserved, must be NULL or empty (").
Hints:

See chapter "Important Remarks on the Function Parameters of DLLs" concerning the buffer return value.

Return value:
Error code

107

API Reference Function Reference

LIDomCreateSubobject

Syntax:

INT LlDomCreateSubobject (HLLDOMOBJ hDOMObj, INT nPosition,LPCTSTR pszType, PHLLDOMOBJ
phDOMSubObj) ;

Task:

Creates a new subobject within the specified DOM list. Detailed application examples can be found in
chapter "DOM Functions".

Parameter:
hDomObj: DOM handle for the list

nPosition: Index (0-based) of the element to be inserted. All following elements are moved back one
position.

pszType: Desired element type, e.g. "Text", for creating a new text object in the object list
phDOMSubObj: Pointer to DOM handle for return

Return value:
Error code

See also:
Chapter "DOM Functions"

LIDomDeleteSubobject

Syntax:
INT LlDomDeleteSubobject (HLLDOMOBJ hDOMObj, INT nPosition);

Task:

Deletes a subobject from the specified DOM list. Detailed application examples can be found in chapter
"DOM Functions'".

Parameter:
hDomObj: DOM handle for the list

nPosition: Index (0-based) of the element to be deleted. All following elements are moved forward one
position.

Return value:
Error code

See also:
Chapter "DOM Functions"

LIDomGetObject

Syntax:
INT LlDomGetObject (HLLDOMOBJ hDOMObj, LPCTSTR pszName, PHLLDOMOBJ phDOMSubObij) ;

Task:

Provides a subobject of the specified DOM object, and is used e.g. to request the object list from the
project. Detailed application examples can be found in chapter "DOM Functions".

Parameter:
hDomObj: DOM handle for the "parent" object

pszName: Name of the desired subobject, e.g. "Objects"
pPhDOMSubObj: Pointer to DOM handle for return

Return value:
Error code

See also:
Chapter "DOM Functions"

108

API Reference Function Reference

LIDomGetProject

Syntax:
INT LlDomGetProject (HLLJOB hJob, PHLLDOMOBJ phDOMObY) ;

Task:

Returns the currently loaded project object. Can be used after L/Print(WithBox)Start, for example, to change
the project during printing with DOM functions for printing/exporting, i.e. the changes are only temporary
and are not persistent or are not saved in the project. Detailed application examples can be found in the
chapter "DOM Functions".

Parameter:

hJob: List & Label job handle

phDOMSubObj: Pointer to DOM handle for return
Return value:

Error code
Hints:

To create new projects or to edit projects persistently before printing, use the calls L/ProjectOpen),
LIDomGetProject(), LIProjectSave() and LIProjectClose().

See also:
Chapter "'DOM Functions"

LIDomGetProperty

Syntax:
INT LlDomGetProperty (HLLDOMOBJ hDOMObj, LPCTSTR pszName, LPTSTR pszBuffer, UINT nBufSize);

Task:

Returns the content of the specified property. Detailed application examples can be found in chapter "DOM
Functions".

Parameter:
hDomObj: DOM handle for the object to be queried

pszName: Name of the desired property, e.g. "Condition", for requesting the appearance condition of an
object.

pszBuffer: Buffer for the return value. Can be NULL (see notes)
nBufSize: Size of buffer

Return value:
Error code or required buffer size

Hints:

If pszBuffer is NULL, the return value is the length of the required buffer (in TCHARS, so BYTEs for
SBCS/MBCS and WCHARSs for UNICODE) including the string termination.

See chapter "Important Remarks on the Function Parameters of DLLs" concerning the buffer return value.

See also:
Chapter "DOM Functions"

LIDomGetSubobject

Syntax:
INT LlDomGetSubobject (HLLDOMOBJ hDOMObj, INT nPosition, PHLLDOMOBJ phDOMSubObj) ;

Task:

Returns the specified subelement of the DOM list. Detailed application examples can be found in chapter
"'DOM Functions".

Parameter:
hDomObj: DOM handle for the list to be queried

109

API Reference Function Reference

nPosition: Index (0-based) of the desired element
phDOMSubObj: Pointer to DOM handle for return

Return value:
Error code

See also:
Chapter "DOM Functions"

LIDomGetSubobjectCount

Syntax:
INT LlDomGetSubobjectCount (HLLDOMOBJ hDOMObj, _LPINT pnCount);

Task:

Returns the number of elements in the specified DOM list. The number of objects in the object list can be
determined, for example. Detailed application examples can be found in chapter "DOM Functions".

Parameter:
hDomObj: DOM handle for the list to be queried

pnCount: Pointer for return

Return value:
Error code

See also:
Chapter "DOM Functions"

LIDomSetProperty

Syntax:
INT LlDomSetProperty (HLLDOMOBJ hDOMObj, LPCTSTR pszName, LPCTSTR pszValue) ;

Task:
Sets the specified property to the passed value. Detailed application examples can be found in chapter
'DOM Functions".

Parameter:

hDomObj: DOM handle for the object to be altered
pszName: Name of the desired property, e.g. "Condition", for setting the appearance condition of an object
pszValue: New value of the property

Return value:
Error code

See also:
Chapter "'DOM Functions"

LIEnumGetEntry

Syntax:

HLISTPOS LlEnumGetEntry (HLLJOB hJob, HLISTPOS hPos, LPSTR pszNameBuf, UINT nNameBufsize, LPSTR
pszContBuf, UINT nContBufSize, LPHANDLE pHandle, LPINT pType);

Task:
Returns the name and contents of a variable or (chart) field.

Parameter:
hJob: List & Label job handle

hPos: The handle of the current field iterator

pszNameBuf, nNameBufsize: Buffer where the name should be stored

110

API Reference Function Reference

pszContBuf, nContBufSize: Buffer where the contents should be stored. pszContBuf can be NULL to
ignore the contents string.

pHandle: Pointer to a handle where the handle value should be stored. Can be NULL to ignore the handle
value. See LIDefineVariableExtHandle() and LIDefineFieldExtHandle().

pType: Pointer to an INT, in which the type (LL_TEXT, ...) will be stored. May be NULL to ignore the type.

Return Value:
Error code

Hints:
During the LIEnum...() functions, a call to L/DefineVariableStart() or LIDefineFieldStart() is prohibited!

The iterator functions can be used to enumerate variables and/or fields and to get their names, contents
and types.

See chapter "Important Remarks on the Function Parameters of DLLs" concerning the buffer return value.

Example:

The following example traverses the list of variables and prints all of them (LL TYPEMASK is the constant
for all possible variable types):
HLISTPOS hPos = LlEnumGetFirstVar (hJob, LL TYPEMASK) ;

while (hPos != NULL)
{
TCHAR szName[64+1];
TCHAR szContents[256+1];
L1EnumGetEntry (hdob, hPos, szName, sizeof (szName), szContents,
sizeof (szContents), NULL, NULL);
printf ("$s - %$s\n",szName, szContents) ;
hPos = LlEnumGetNextEntry(hJob, hPos, LL TYPEMASK);
}

See also:
LIEnumGetFirstVar, LIEnumGetFirstField, LIEnumGetFirstChartField, LIEnumGetNextEntry

LIEnumGetFirstChartField

Syntax:
HLISTPOS LlEnumGetFirstChartField (HLLJOB hJob, UINT nFlags);
Task:

Returns an iterator for the first chart field. The name does not have to be known, the chart fields are returned
in the order in which they are declared to List & Label.

Parameter:
hJob: List & Label job handle

nFlags: Flags for the allowed types of fields (to be OR-ed):
LL TEXT, LL BOOLEAN, LL_ BARCODE, LL DRAWING, LL_ NUMERIC, LL DATE, LL HTML, LL RTF,
LL TYPEMASK (to iterate all of them)

Return Value:
Iterator of first chart field, or NULL if no field exists.

Hints:
During the iteration, a call to L/DefineChartFieldStart() is prohibited!

See also:
LIEnumGetFirstVar, LIEnumGetFirstField, LIEnumGetNextEntry, LIEnumGetEntry

LIEnumGetFirstField

Syntax:
HLISTPOS LlEnumGetFirstField (HLLJOB hJob, UINT nFlags);

Task:

Returns an iterator for the first field. The name does not have to be known, the fields are returned in the
order in which they are declared to List & Label.

111

API Reference Function Reference

Parameter:
hJob: List & Label job handle

nFlags: Flags for the allowed types of fields (to be OR-ed):
LL TEXT, LL BOOLEAN, LL_ BARCODE, LL DRAWING, LL_ NUMERIC, LL DATE, LL HTML, LL _RTF,
LL TYPEMASK (to iterate all of them)

Return Value:
Iterator of first field, or NULL if no field exists.

Hints:
During the iteration, a call to L/DefinefieldStart() is prohibited!

See also:
LIEnumGetFirstVar, LIEnumGetNextEntry, LIEnumGetEntry

LIEnumGetFirstVar

Syntax:
HLISTPOS LlEnumGetFirstVar (HLLJOB hJob, UINT nFlags);

Task:

Returns an iterator for the first variable. The name does not have to be known, the variables are returned in
the order in which they are declared to List & Label.

Parameter:
hJob: List & Label job handle

nFlags: Flags for the allowed types of fields (to be OR-ed):
LL TEXT, LL BOOLEAN, LL BARCODE, LL DRAWING, LL NUMERIC, LL DATE, LL RTF, LL HTML,
LL TYPEMASK (to iterate all of them)

Return Value:
Iterator of first variable, or NULL if no further variable exists.

Hints:
During the iteration, a call to L/DefineVariableStart() is prohibited!

Internal variables are not iterated.

See also:
LIEnumGetFirstField, LIEnumGetNextEntry, LIEnumGetEntry

LIEnumGetNextEntry

Syntax:
HLISTPOS LlEnumGetNextEntry (HLLJOB hJob, HLISTPOS hPos, UINT nFlags);

Task:

Returns the next field/variable (if any). The iteration starts with LIEnumGetFirstVar() or LIEnumGetFirstField()
and is continued with this function.

Parameter:
hJob: List & Label job handle
hPos: Iterator of the current variable or field

nFlags: Flags for the allowed types of fields (to be OR-ed):
LL TEXT, LL BOOLEAN, LL_ BARCODE, LL DRAWING, LL_ NUMERIC, LL DATE, LL RTF, LL HTML

Return Value:
[terator for the next variable/field, or NULL if no further variable/field exists.

Hints:
During the L/IEnum...() functions, a call to L/DefineVariableStart() or LIDefineFieldStart() is prohibited!

See also:
LIEnumGetFirstVar, LIEnumGetFirstField, LIEnumGetEntry

112

API Reference Function Reference

LIExprError

Syntax:
void LlExprError (HLLJOB hJob, LPTSTR lpBuffer, UINT nBuffer Size);

Task:
Returns the reason for the error in plain text.

Parameter:
hJob: List & Label job handle

IpBuffer: Address of buffer for error text
nBufferSize: Maximum number of characters to be copied

Return Value:
Error code

Hints:
The function must be called immediately after L/ExprParse() returns an error.

See chapter "Important Remarks on the Function Parameters of DLLs" concerning the buffer return value.

Example:
See LIExprParse

See also:
LIExprParse, LIExprEvaluate, LIExprType, LIExprFree

LIExprEvaluate

Syntax:
INT LlExprEvaluate (HLLJOB hJOB, HLLEXPR lpExpr, LPTSTR lpBuffer, UINT nBufferSize);

Task:
Evaluates an expression.

Parameter:
hJob: List & Label job handle

IpExpr: The pointer returned by the corresponding L/ExprParse()
IpBuffer: Address of buffer for calculated value
nBufferSize: Maximum number of characters to be copied

Return Value:
Error code

Hints:
The buffer is always filled with a zero-terminated string.

Depending on the type of result, the buffer contents are to be interpreted as follows:

Type Meaning

LL EXPRTYPE STRING The buffer contents are the result string

LL EXPRTYPE DOUBLE The buffer contents are the corresponding
representation of the value, for pi e.g.
'3.141592". The value is always specified
with 6 decimal places.

LL EXPRTYPE DATE The buffer contains the corresponding
representation of the Julian value, for
example "21548263".

LL EXPRTYPE BOOL The buffer contains either the string "TRUE"
or "FALSE".

LL EXPRTYPE DRAWING The buffer contains the name of the
drawing variable/drawing field (!), not the
contents.

LL EXPRTYPE BARCODE The buffer contains the value which would
be interpreted as the barcode.

113

API Reference Function Reference

See chapter "Important Remarks on the Function Parameters of DLLs" concerning the buffer return value.

Example:
See LIExprParse

See also:
LIExprParse, LIExprType, LIExprError, LIExprFree

LIExprFree

Syntax:
void LlExprFree (HLLJOB hJob, HLLEXPR lpExpr);

Task:
Releases the parsing tree created by L/ExprParse().

Parameter:
hJob: List & Label job handle

IpExpr: The pointer returned from the corresponding L/ExprParse()

Hints:

To avoid memory leaks, the function must be called when a tree returned by L/ExprParse() is no longer
required.

Example:
See LIExprParse

See also:
LIExprParse, LIExprEvaluate, LIExprType, LIExprError

LIExprGetUsedVars

Syntax:
INT LlExprGetUsedVars (HLLJOB hJob, HLLEXPR lpExpr, LPSTR pszBuffer, UINT nBufSize);

Task:
Returns the variables and fields (tab-separated) that were used in a formula with LIExprParse().

Parameter:
hJob: List & Label job handle

IpExpr: The pointer returned by the corresponding L/ExprParse()
pszBuffer: Buffer for the return value
nBufSize: Size of buffer

Hints:
Corresponds to "LIExprGetUsedVarsEx" with parameter bOrgName = TRUE.

See chapter "Important Remarks on the Function Parameters of DLLs" concerning the buffer return value.

See also:
LIExprParse, LIExprEvaluate, LIExprType, LIExprError

LIExprGetUsedVarsEx

Syntax:

INT LlExprGetUsedVarsEx (HLLJOB hLlJob, HLLEXPR lpExpr, LPSTR pszBuffer, UINT nBufSize, BOOL
bOrgName) ;

Task:
Returns the variables and fields (tab-separated) that were used in a formula with LIExprParse().

Parameter:
hJob: List & Label job handle

114

API Reference Function Reference

IpExpr: The pointer returned by the corresponding L/ExprParse()
pszBuffer: Buffer for the return value

nBufSize: Size of buffer

bOrgName: TRUE: global field names, FALSE: localized field names

Hints:
See chapter "Important Remarks on the Function Parameters of DLLs" concerning the buffer return value.

See also:
LIExprParse, LIExprEvaluate, LIExprType, LIExprError

LIExprParse
Syntax:
LPVOID LlExprParse (HLLJOB hJob, LPCTSTR lpExprText, BOOL bTableFields);
Task:
Tests the expression for correctness and constructs a function tree for this expression.
Parameter:

hJob: List & Label job handle
IpExprText: Expression
bTableFields: TRUE: reference to fields and variables FALSE: reference to variables

Return Value:
Pointer to an internal structure (parsing tree)
Hints:
If an error is signaled (Address = NULL) then you can query the error text with L/ExprErrory().

The variables defined with L/DefineVariable() can be integrated into the expression if bTableFields is FALSE,
otherwise the fields defined with L/DefineField() are included in the expression.

If the expression is used for calculation several times, it is recommended that you translate it once with
LIExprParse() and then carry out the calculations, releasing the tree at the end.

Example:
LPVOID 1pExpr;
char lpszErrortext[128];
char lpszBuf[20];
Long 1DateOne;
Long 1lDateTwo;
LlDefineVariable (hJob, "Date", "29.2.1964", LL_TEXT);
lpExpr = LlExprParse (hJob, "DateToJulian (DATE (Date))", FALSE);
if (lpExpr)
{
if (L1ExprType (hJob, lpExpr) != LL_EXPRTYPE DOUBLE)

{
// something is wrong, must be numerical!
}
LlExprEvaluate (hdob, lpExpr, lpszBuf, sizeof (lpszBuf));
1DateOne = atol (lpszBuf);
// lDateOne now has the Julian date
// 29.2.1964
LlDefineVariable (hJob, "Date", "28.10.2017", LL TEXT);
LlExprEvaluate (hdob, lpExpr, lpszBuf, sizeof (lpszBuf));
1DateTwo = atol (lpszBuf);
// 1lDateTwo now has the Julian date
LlExprFree (hJob, lpExpr);
}
else
{
// Error!
Ll1ExprError (hJob, lpszErrortext, sizeof (lpszErrortext));
}

See also:
LIExprEvaluate, LIExprType, LIExprError, LIExprFree

115

API Reference Function Reference

LIExprType

Syntax:
INT L1ExprType (HLLJOB hJOB, HLLEXPR lpExpr);

Task:
Evaluates the result type of the expression.

Parameter:
hJob: List & Label job handle

IpExpr: The pointer returned from the corresponding L/ExprParse()

Return Value:
Type of result:

Value Meaning

LL EXPRTYPE STRING String

LL EXPRTYPE DOUBLE Numerical value
LL EXPRTYPE DATE Date

LL EXPRTYPE BOOL Boolean value

LL EXPRTYPE DRAWING Drawing
LL EXPRTYPE BARCODE Barcode

Example:
See LIExprParse

See also:
LIExprParse, LIExprEvaluate, LIExprError, LIExprFree

LIGetChartFieldContents

Syntax:
INT LlGetChartFieldContents (HLLJOB hJob, LPCTSTR lpszName, LPTSTR lpszBuffer, UINT nBufSize);

Task:
Returns the contents of the corresponding chart field.

Parameter:
hJob: List & Label job handle

IpszName: Pointer to a string with the name of the chart field
IpszBuffer: Address of buffer for contents
nBufSize: Maximum number of characters to be copied

Return Value:
Error code (LL_ ERR UNKNOWN _FIELD or 0)

Hints:
This function can be used in callback routines to ask for the contents of chart fields.

See chapter "Important Remarks on the Function Parameters of DLLs" concerning the buffer return value.

See also:
LIDefineChartFieldStart, LIDefineChartFieldExt, LIGetFieldType

LIGetDefaultPrinter

Syntax:

INT LlGetDefaultPrinter (LPTSTR pszPrinter, LLPUINT pnBufferSize, _PDEVMODE pDevMode, LLPUINT
pnDevModeBufSize, UINT nOptions)

Task:
Returns the name of the default printer and a DEVMODE struct corresponding to the default settings.

116

API Reference Function Reference

Parameter:
pszPrinter: Address of buffer for the printer name. May be NULL (see hints).

pnBufferSize: Size of the buffer (in TCHARS).

pDevMode: Address of buffer for the DEVMODE struct. May be NULL (see hints)
pnDevModeBufSize: Size of the buffer (in bytes).

nOptions: Reserved, must be 0.

Return Value:
Error code

Hints:

If pszPrinter and pDevMode is NULL, the required buffer sizes are stored in pnPrinterBufferSize and
pnDevModeBufferSize.

See chapter "Important Remarks on the Function Parameters of DLLs" concerning the buffer return value.

See also:
LISetPrinterToDefault, LISetPrinterInPrinterFile

LIGetDefaultProjectParameter

Syntax:

INT LlGetDefaultProjectParameter (HLLJOB hLlJob, LPCTSTR pszParameter, LPTSTR pszBuffer, INT
nBufSize, LPUINT pnFlags)

Task:
Returns the default value of a project parameter (see chapter "Project Parameters")

Parameter:
hJob: List & Label job handle

pszParameter: Parameter name. May be NULL (see hints)
pszBuffer: Address of buffer for contents. May be NULL (see hints)
nBufSize: Size of the buffer (in TCHARSs).

pnFlags: Pointer to an UINT defining the type of the parameter (for valid values see
LISetDefaultProjectParameter()). May be NULL if the value is not required.

Return Value:
Error code or required buffer size

Hints:
If pszParameter is NULL, a semicolon separated list of all USER parameters is returned.
If pszBuffer is NULL, the return value equals the size of the required buffer (in TCHARS) including the
termination.

See chapter "Important Remarks on the Function Parameters of DLLs" concerning the buffer return value.

See also:
LISetDefaultProjectParameter, LIPrintSetProjectParameter, LIPrintGetProjectParameter

LIGetErrortext

Syntax:
INT LlGetErrortext (INT nError, LPTSTR lpszBuffer, UINT nBufSize);

Task:
Provides a localized error message for the passed error code.

Parameter:
nError: Error code

IpszBuffer: Pointer to buffer in which the message is to be stored

nBufSize: Size of buffer

17

API Reference Function Reference

Return value:
Error code or required buffer size

Hints

This function can be used to display an error message. More frequent errors are e.g. LL_ERR_EXPRESSION
(-23) or LL_ERR_NOPRINTER (-11). If a job has already been opened, the output will occur in the language
of the respective job, otherwise the language of the first language kit found will be used.

See chapter "Important Remarks on the Function Parameters of DLLs" concerning the buffer return value.

LIGetFieldContents

Syntax:
INT LlGetFieldContents (HLLJOB hJob, LPCTSTR lpszName, LPTSTR lpszBuffer, UINT nBufSize);

Task:
Returns the contents of the corresponding (chart) field.

Parameter:
hJob: List & Label job handle

IpszName: Pointer to a string with the name of the field
IpszBuffer: Address of buffer for contents
nBufSize: Maximum number of characters to be copied

Return Value:
Error code (LL_ ERR_ UNKNOWN _FIELD or 0)

Hints:
This function can be used in callback routines to ask for the contents of fields.

See chapter "Important Remarks on the Function Parameters of DLLs" concerning the buffer return value.

See also:
LIDefineFieldStart, LIDefineFieldExt, LIDefineFieldExtHandle, LIGetFieldType

LIGetFieldType

Syntax:
INT LlGetFieldType (HLLJOB hJob, LPCTSTR lpszName);

Task:
Returns the type of the corresponding field.

Parameter:
hJob: List & Label job handle

IpszName: Pointer to a string with the name of the field

Return Value:
Field type (positive), or error code (negative)

Hints:
This function can be used in callback routines to ask for the type of fields.

See also:
LIDefineFieldStart, LIDefineFieldExt, LIDefineFieldExtHandle, LIGetFieldContents

LIGetLastErrorText

Syntax:
INT LlGetLastErrorText (HLLJOB hJob, LPWSTR pszBuffer, UINT nBufSize);

Task:
Returns the List & Label error text and the detailed windows error.

118

API Reference Function Reference

Parameter:
hJob: List & Label job handle

pszBuffer: Buffer for return value
nBufSize: Size of buffer

Return value:
Error code or buffer size needed, if pszBuffer is NULL.

Hints:
See chapter "Important Remarks on the Function Parameters of DLLs" concerning the buffer return value.

LIGetNotificationMessage

Syntax:
UINT LlGetNotificationMessage (HLLJOB hJob) ;

Task:
Returns the message number for callbacks.

Parameter:
hJob: List & Label job handle

Return Value:
Current message number

Hints:
The default message number has the value of the function RegisterWindowMessage('cmbtLLMessage");

The callback function has higher priority; if it is defined, no message is sent.

Should not be used in components that offer events on their own, e.g. .NET, VCL or OCX components.

Example:
HLLJOB hJob;
UINT wMsqg;

L1SetDebug (TRUE) ;
hJob = L1JobOpen (0) ;
v = LlGetNotificationMessage (hJob) ;

LijobClose(hJob);
See also:
LISetNotificationMessage, LISetNotificationCallback

LIGetOption

Syntax:
INT PTR LlGetOption (HLLJOB hJob, INT nMode) ;

Task:
Requests various switches and settings (see below) from List & Label.

Parameter:

hJob: List & Label job handle

nMode: Option index, see L/SetOption()
Return Value:

The value of the corresponding option

Hints:

The option indices are listed in the description of L/SetOption(). In addition, there are some new or (with
regard to the function L/SetOption()) modified options:

LL_OPTION_LANGUAGE

Returns the currently selected language (See LIJobOpen() and LIJobOpenLCID()).

119

API Reference Function Reference

LL_OPTION_HELPAVAILABLE

LOWORD: See LISetOption()
HIWORD: Checks whether the help file is present: TRUE: usable, FALSE: not usable (not present)

LL_OPTION_DEFPRINTERINSTALLED

Returns whether the operating system has a default printer.

Example:
HLLJOB hJob;
UINT nLanguage;

L1SetDebug (TRUE) ;

hJob = L1lJobOpen (0) ;

VA

nLanguage = LlGetOption (hJob, LL OPTION_LANGUAGE) ;
VA

LlJobClose (hJob) ;

See also:
LISetOption

LIGetOptionString

Syntax:

INT LlGetOptionString (HLLJOB hJob, INT nMode, LPTSTR pszBuffer, UINT nBufSize);
Task:

Requests various string settings (see below) from List & Label.
Parameter:

hJob: List & Label job handle

nMode: Option index, see LISetOptionString()

pszBuffer: Pointer to a buffer where the requested value will be stored.
nBufSize: Size of the buffer

Return Value:
The value of the corresponding option

Hints:
The option indices are listed in the description of L/SetOptionString().

See chapter "Important Remarks on the Function Parameters of DLLs" concerning the buffer return value.

Example:

HLLJOB hJob;
TCHAR szExt[128];

L1SetDebug (TRUE) ;

hJob = L1lJobOpen (0) ;

VA

LlGetOptionString (hJob, LL OPTIONSTR PRJEXT,
szExt,sizeof (szExt));

VA

LlJobClose (hJob) ;

See also:
LISetOptionString

LIGetPrinterFromPrinterFile

Syntax:

INT LlGetPrinterFromPrinterFile (HLLJOB hJob, UINT nObjType, LPCTSTR pszObjName, INT nPrinter,
LPTSTR pszPrinter, LLPUINT pnSizePrn, PDEVMODE pDM, LLPUINT pnSizeDm) ;

Task:
Queries the printer configuration from the printer configuration file of List & Label.

Parameter:
hJob: List & Label job handle

120

API Reference

Function Reference

nObjType: L PROJECT LABEL, LL PROJECT CARD or LL PROJECT LIST

pszObjName: File name of the project with file extension

nPrinter: Index of the printer to be queried (0=first, 1=second) If you pass values starting from 100 (e.g. in
a loop until you receive LL ERR_PARAMETER as return value) you can query the printer for the various
layout regions (corresponding to their order being set in the Designer via 'Project > Page Setup'). If the

project contains only one printer, nPrinter must be -1.

pszPrinter: Address of buffer for printer name. If this pointer is NULL and pnSizePrn is not NULL, the

necessary size of the buffer will be stored in *pnSizePrn.

pnSizePrn: Address of variable with buffer size (Size in characters, therefore the doubled size in Bytes must

be reserved for the Unicode API).

pDM: Address of buffer for the DEVMODE structure. If this pointer is NULL and pnSizeDm non-NULL, the

necessary size of the buffer will be stored in *pnSizeDm.

pnSizeDm: Address of variable with buffer size.

Return Value:

Error code
Hints:
The DEVMODE structure is defined and described in the Windows API.
Due to the possibility to define layout regions in the Designer the practical benefit of this function has been
quite limited. We recommend using the LL object model according to chapter "Using the DOM-API
(Professional/Enterprise Edition Only)" to access the layout regions and the associated printers.
See chapter "Important Remarks on the Function Parameters of DLLs" concerning the buffer return value.
See also:

LISetPrinterInPrinterFile

LIGetProjectParameter

Syntax:

Task:

INT LlGetProjectParameter (HLLJOB hJob, LPCTSTR lpszProjectName,

lpszBuffer, UINT nBufSize);

LPCTSTR lpszParameter, LPTSTR

Returns the value of the project parameter for the given project file. If the project parameter contains a

formula, it is returned as is without being evaluated.

Parameter:

hJob: List & Label Job-Handle

IpszProjectName: Pointer to a string with the project name
IpszParameter: Pointer to a string with the parameter name
IpszBuffer Address of buffer for contents

nBufSize: Maximum number of characters to be copied

Return Value:

Error code

Example:

HLLJOBhJob;
TCHAR Buffer[1024];
hJob = L1JobOpen (0) ;

LlSetDefaultProjectParameter (hJob, "QueryString",

"SELECT * FROM PRODUCTS", LL_ PARAMETERFLAG SAVEDEFAULT) ;
// call up designer

// then before print starts

LlGetProjectParameter (hJob, "c:\\repository\\report.lst", "QueryString"

<... etc ...>
LlJobClose (hJob) ;

Buffer, 1024);

121

API Reference Function Reference

Hints:

This APl is especially useful if the project parameter is queried before printing to offer report parametrization
to the user.

See chapter "Important Remarks on the Function Parameters of DLLs" concerning the buffer return value.

See also:
LIPrintIsVariableUsed, LIPrintlsChartFieldUsed, LIPrintlsFieldUsed

LIGetSumVariableContents

Syntax:

INT LlGetSumVariableContents (HLLJOB hJob, LPCTSTR lpszName, LPTSTR lpszBuffer, UINT nBufSize);
Task:

Returns the contents of the corresponding sum variable.
Parameter:

hJob: Job handle

IpszName: Pointer to a string with the name of the sum variable.
IpszBuffer: Address of buffer for contents

nBufSize: Maximum number of characters to be copied

Return Value:
Error code (LL_ ERR UNKNOWN _FIELD or 0)

Hints:
This function can be used in callback routines to ask for the contents of sum variables.
See chapter "Important Remarks on the Function Parameters of DLLs" concerning the buffer return value.
See also:
LIDefineSumVariable, LIGetUserVariableContents, LIGetVariableContents
LIGetUsedldentifiers
Syntax:
INT LlGetUsedIdentifiers (HLLJOB hJob, LPCTSTR lpszProjectName, LPTSTR lpszBuffer, UINT
nBufSize);
Task:
Returns a list of variables, fields and chart fields that are actually used within the given project file, in order
to increase performance, as only these values need to be provided.
Parameter:

hJob: List & Label Job-Handle

IpszProjectName: Pointer to a string with the project name
IpszBuffer Address of buffer for contents

nBufSize: Maximum number of characters to be copied

Return Value:
Error code

Hints:
See chapter "Important Remarks on the Function Parameters of DLLs" concerning the buffer return value.

See also:
LIGetUsedldentiefersEx

122

API Reference Function Reference

LIGetUsedldentifiersEx

Syntax:

INT LlGetUsedIdentifiersEx (HLLJOB hJob, LPCTSTR lpszProjectName, UINT nIdentifierTypes, LPTSTR
lpszBuffer, UINT nBufSize);

Task:

Returns a list of variables, fields and chart fields that are actually used within the given project file, in order
to increase performance, as only these values need to be provided.

Parameter:
hJob: List & Label Job-Handle

IpszProjectName: Pointer to a string with the project name

nldentifierTypes |dentifier types that shall be considered. The values can be OR-ed:

Value Meaning

LL USEDIDENTIFIERSFLAG | Variables

_VARIABLES

LL USEDIDENTIFIERSFLAG | Fields

_FIELDS

LL USEDIDENTIFIERSFLAG Chart fields

_CHARTFIELDS

LL USEDIDENTIFIERSFLAG Tables (see LIDbAddTable)

_TABLES

LL USEDIDENTIFIERSFLAG | Relations (see LIDbAddTableRelation)
_RELATIONS

LL USEDIDENTIFIERSFLAG Files (required templates, index, table of contents,
_FILES etc.)

IpszBuffer Address of buffer for contents
nBufSize: Maximum number of characters to be copied

Return Value:
Error code

Hints:
See chapter "Important Remarks on the Function Parameters of DLLs" concerning the buffer return value.

See also:
LIGetUsedldentiefers

LIGetUserVariableContents

Syntax:

INT LlGetUserVariableContents (HLLJOBR hJob, LPCTSTR lpszName, LPTSTR lpszBuffer, UINT
nBufSize);

Task:
Returns the contents of the corresponding user variable.

Parameter:
hJob: List & Label job handle

IpszName: Pointer to a string with the name of the sum variable.
IpszBuffer: Address of buffer for contents
nBufSize: Maximum number of characters to be copied

Return Value:
Error code (LL_ ERR UNKNOWN _FIELD or 0)

Hints:
This function can be used in callback routines to ask for the contents of user variables.

The variable type can be requested with L/GetVariableType() or LIGetFieldType().

123

API Reference Function Reference

See chapter "Important Remarks on the Function Parameters of DLLs" concerning the buffer return value.

See also:
LIGetSumVariableContents, LIGetVariableContents

LIGetVariableContents

Syntax:
INT LlGetVariableContents (HLLJOB hJob, LPCTSTR lpszName, LPTSTR lpszBuffer, UINT nBufSize);

Task:
Returns the contents of the corresponding variable.

Parameter:
hJob: Job handle

IpszName: Pointer to a string with the name of the variable
IpszBuffer: Address of buffer for contents
nBufSize: Maximum number of characters to be copied

Return Value:
Error code (LL_ERR_UNKNOWN or 0)

Hints:
This function can be used in callback routines to ask for the contents of variables.

See chapter "Important Remarks on the Function Parameters of DLLs" concerning the buffer return value.

See also:
LIDefineVariableStart, LIDefineVariableExt, LIDefineVariableExtHandle, LIGetVariableType

LIGetVariableType

Syntax:
INT LlGetVariableType (HLLJOB hJob, LPCTSTR lpszName) ;

Task:
Returns the type of the corresponding variable.

Parameter:
hJob: List & Label job handle

IpszName: Pointer to a string with the name of the variable

Return Value:
Variable type (positive), or error code (negative)
Hints:
This function can be used in callback routines to ask for the type of variables.

See also:
LIDefineVariableStart, LIDefineVariableExt, LIDefineVariableExtHandle, LIGetVariableContents

LIGetVersion
Syntax:
INT LlGetVersion (INT nCmd) ;
Task:
Returns the version number of List & Label.
Parameter:
Value Meaning

LL VERSION MAJOR (1) Returns the main version number, e.g. 31

124

API Reference Function Reference

LL VERSION_MINOR (2) Returns the minor version number, for
example 1, (1 means 001 as the sub-
version has three digits).

Return Value:
See parameter
Example:

int v;
v = LlGetVersion (VERSION MAJOR) ;

LJobClose

Syntax:
void LlJobClose (HLLJOB hJob) ;

Task:

Releases the internal variables, frees resources etc.

Parameter:
hJob: List & Label job handle

Hints:
This function should be called at the end (coupled with LIJobOpen() or LIJobOpenLCID()), i.e. after using the
List & Label DLL or when ending your program.

Example:
HLLJOB hJob;
hJob = L1lJobOpen (1) ;
LlDefineVariableStart (hJob) ;

<... etc ...>
LlJobClose (hJob) ;

See also:
LIJobOpen, LIJobOpenLCID

LIJobOpen

Syntax:
HLLJOB LlJobOpen (INT nLanguage) ;

Task:

Initializes internal variables and resources of the DLL for a calling program. Almost all DLL commands
require the return value of this function as the first parameter.

Parameter:
nlLanguage: Chosen language for user interactions (dialogs)

Value Meaning

CMBTLANG _DEFAULT Default language (use settings in Windows)
For other languages see header file
declarations

CMBTLANG GERMAN German

CMBTLANG _ENGLISH English

Further constants can be found in your declaration file.

If this parameter is OR-ed with the constant LL JOBOPENFLAG NOLIXPRELOAD, no List & Label
extensions will be preloaded.

Return Value:

A handle which is required as a parameter for most functions in order to have access to application-specific
data.

A valid value is greater than 0. If the value is less than 0, it shows an errorcode. Please see chapters "General
Notes About the Return Value" and "Error Codes" for further details.

125

API Reference Function Reference

Hints:

For ease of maintenance, we suggest putting global settings in one place, immediately after the LIJobOpeny)
call (dialog design, callback modes, expression mode, ...).

The C?LL31.DLL requires the language-dependent components which are stored in a separate DLL, e.g.
C?LL3100.LNG or C?LL3101.LNG. They are loaded depending on the language setting.

If List & Label is no longer required, then the job should be released with the function LiJobClose() to give
the DLL a chance to release the internal variables for this job.

The language IDs appended to the file name are a hex representation of the CMBTLANG xxxx language
codes found in the header (*.H, *.BAS, *.PAS, ...) file.

Example:

HLLJOBhJob;
hJob = LlJobOpen(CMBTLANG_ENGLISH);
LlDefineVariableStart (hJob) ;

LlDefineVariable (hdob, "Name", "Smith");
LlDefineVariable (hJob, "forename", "George");
<... etc ...>

LlJobClose (hJob) ;

See also:

LIJobOpenLCID, LIJobClose, LISetOption, LIDesignerProhibitAction, LISetFileExtensions

LJobOpenLCID

Syntax:

Task:

HLLJOB L1JobOpenLCID (_LCID nLCID);

See LIJobOpeny).

Parameter:

nLCID: Windows locale ID for user interactions (dialogs)

Return Value:

Hints:

See LIJobOpen().

Calls LIJobOpen() with the respective CMBTLANG ... value.

Example:

HLLJOBhJob;
hJob = L1JobOpenLCID (LOCALE USER DEFAULT) ;
LlDefineVariableStart (hJob) ;

LlDefineVariable (hJob, "Name", "Smith");
LlDefineVariable (hJdob, "forename", "George");
<... etc ...>

L1lJobClose (hJob) ;

See also:

LIJobOpen, LIJobClose, LISetOption, LIDesignerProhibitAction, LISetFileExtensions

LIJobStateRestore

Syntax:

Task:

INT LlJobStateRestore (HLLJOB hLlJob, PISTREAM pStream,UINT nFlags);

This APl is used e.g. by the .NET DesignerControl to restore the state of a job previously saved on one
machine on a different other machine. Depending on the flags passed, the variables, fields and database
structure are deserialized from the stream. Thus, a following call to L/Definelayout() offers the structures
read from the stream in the Designer.

Parameter:

hJob: List & Label job handle

pStream: Stream that was created by a preceeding call to LIJobStateSave(). The stream format is proprietary
and may change anytime without notice.

126

API Reference Function Reference

nFlags: Combination of LL JOBSTATEFLAG ... values. They determine which values are read from the
stream (variables, fields, chart fields, database structure, dictionaries, other job settings). To deserialize all
available information, use LL_ JOBSTATEFLAG ALL.

Return Value:
See LIJobOpen().

See also:
LIJobStateSave

LIJobStateSave

Syntax:
INT LlJobStateRestore (HLLJOB hLlJob, PISTREAM pStream,UINT nFlags, bool bPacked);

Task:

This APl is used e.g. by the .NET DesignerControl to save the state of a job. Depending on the flags passed,
the variables, fields and database structure are serialized to the stream.

Parameter:
hJob: List & Label job handle

pStream: Serialization stream. The stream format is proprietary and may change anytime without notice.

nFlags: Combination of LL JOBSTATEFLAG ... values. They determine which values are written to the
stream (variables, fields, chart fields, database structure, dictionaries, other job settings). To serialize all
available information, use LL_JOBSTATEFLAG ALL.

bPacked: Determines if the stream content should be packed.

Return Value:
See LIJobOpen().

See also:
LIJobStateRestore

LiLocAddDesignLCID

Syntax:
INT LlLocAddDesignLCID (HLLJOB hJob, LCID nLCID);

Task:

Adds a localization language to the project. For all added languages translations can be provided via
LILocAddDictionaryEntry().

Parameter:

hJdob: List & Label job handle

nLCID: \Windows locale ID. The locale ID passed with the first call will be considered as the base language.
All translations that will be provided via L/LocAddDictionaryEntry() need to use this language for the
dictionary keys. If nLCID is 0, all languages will be removed from the list of localization locale IDs.

Return Value:
Error code

See also:
LILocAddDictionaryEntry

LILocAddDictionaryEntry

Syntax:

INT LlLocAddDictionaryEntry (HLLJOB hJob, LCID nLCID, LPCTSTR pszKey, LPCTSTR pszValue, UINT
nType) ;

127

API Reference Function Reference

Task:

Adds a translation pair to one of the dictionaries. The dictionaries allow the localisation of project resp.
Designer items.

Parameter:

hJob: List & Label job handle

nLCID: \Windows locale ID specifing the dictionary to which the translation shall be added. This dictionary
must already have been declared via L/LocAddDesignLCID().

pszKey: Key for the dictionary (original text in the base language).
pszValue: Translated text for the dictionary.

nType: Dictionary type.

Value Meaning

LL DICTIONARY TYPE STATIC Static (fixed) text

LL DICTIONARY TYPE IDENTIFIER Name of field or variable
LL DICTIONARY TYPE TABLE Table name

LL DICTIONARY TYPE RELATION Relation name

LL DICTIONARY TYPE SORTORDER Sortorder name

Return Value:

Hints:

Error code

Use this function to use the same project definition file for various localizations. After having added
languages via LILocAddDictionaryEntry() the Designer toolbar will offer a button for choosing the language.
LL DICTIONARY TYPE_STATIC allows the localization of static text by using the Translate$ Designer
function including Intellisense support. The static text may contain up to three placeholders which are
marked as {0}, {1} and {2}.

At print time the used language will be automatically set according to the thread locale ID (which is the
system language by default). If you want to set a specific language as the default, use LL_OPTION_LCID.
This default setting can be overruled by the end-user via the Designer.

For clean up purposes, set pszKey and pszValue to NULL and nType to 0. This will delete all dictionary
entries from all dictionary types.

Example:

HLLJOBhJob;

hJob = L1JobOpen (CMBTLANG DEFAULT) ;

// Add languages

LlLocAddDesignLCID (hJob, 9); // English as base language
LlLocAddDesignLCID (hJob, 7); // German as translation language

// Add translations

LlLocAddDictionaryEntry (hJdob, 7, "ArticleNumber", "Artikelnummer",
LL DICTIONARY TYPE IDENTIFIER);
LlLocAddDictionaryEntry (hJob, 7, "Price", "Preis",
LL DICTIONARY TYPE IDENTIFIER);
LlLocAddDictionaryEntry (hJob, 7, "Page {0} of {1}", "Seite {0} von {1}",

LL _DICTIONARY TYPE STATIC);

LlDefineVariableStart (hJob) ;
LlDefineVariable (hJob, "ArticleNumber", "12345");
LlDefineVariable (hJob, "Price", "123");

// Invoke Designer etc.

LlJobClose (hJob) ;

See also:

LILocAddDesignLCID, LL_OPTION_LCID

128

API Reference Function Reference

LIPreviewDeleteFiles

Syntax:
INT LlPreviewDeleteFiles (HLLJOB hJob, LPCTSTR lpszObjName, LPCTSTR lpszPath);

Task:
Deletes the temporary file(s) which have been created by the preview print.

Parameter:
hJob: List & Label job handle

IpszObjName: Valid file name with extension and without path
IpszPath: Valid path of the preview files ending with a backslash "\".

Return Value:
Error code

Hints:
Should always be called after L/IPreviewDisplay(), as the preview files are generally only valid momentarily.

Of course, if you want to archive, send or print them at a later time, this should NOT be called.

See also:
LIPrintStart, LIPrintWithBoxStart, LIPreviewDisplay, LIPrintEnd, LIPreviewSetTempPath

LIPreviewDisplay

Syntax:
INT LlPreviewDisplay (HLLJOB hJob, LPCTSTR lpszObjName, LPCTSTR lpszPath, HWND hWnd);

Task:
Starts the preview window.

Parameter:
hJob: List & Label job handle

IpszObjName: Valid file name with file extension and without path name
IpszPath: Valid path of the preview files ending with a backslash "\".
hWnd: Window handle of the calling program

Return Value:
Error code

Hints:

The preview is a window that can be started independently of the Designer and shows the data that has
been printed by the preview print process.

LiPreviewDisplay() calls LIPreviewDisplayEx() with LL_PRVOPT PRN ASKPRINTERIFNEEDED.

See also:

LIPrintStart, LIPrintWithBoxStart, LIPreviewDeleteFiles, LIPrintEnd, LIPreviewSetTempPath,
LIPreviewDisplayEx

LIPreviewDisplayEx

Syntax:

INT LlPreviewDisplayEx (HLLJOB hJob, LPCTSTR lpszObjName, LPCTSTR lpszPath, HWND hWnd, UINT
nOptions, LPVOID pOptions) ;

Task:
Starts the preview. Additional options can define the behavior.

Parameter:
hJob: List & Label job handle

IpszObjName: Valid file name with file extension and without path name

IpszPath: Valid path of the preview files ending with a backslash "\".

129

API Reference Function Reference

hWnd: Window handle of the calling program

nOptions:

Value Meaning

LL PRVOPT PRN - Preview uses the system's default printer

USEDEFAULT

LL PRVOPT PRN - If the printer that is stored in the preview

ASKPRINTERIFNEEDED file (i.e. the printer that has been used for
the preview print process) is not found in
the current computer's printers, a printer
dialog is shown so that the user can select
the printer.

LL PRVOPT PRN - A printer dialog will allow the user to

ASKPRINTERALWAYS choose his default printer for the preview.

pOptions: Reserved, set to NULL or ™.

Return Value:
Error code

Hints:

The preview is a window that can be started independently of the Designer. It shows the data printed by
the preview print process.

If IpszPath is empty, the path of the project file is used.

See also:
LIPrintStart, LIPrintWithBoxStart, LIPreviewDeleteFiles, LIPreviewSetTempPath, LIPreviewDisplay

LIPreviewSetTempPath

Syntax:
INT LlPreviewSetTempPath (HLLJOB hJob, LPCTSTR lpszPath);

Task:

Sets a temporary path for the print preview file(s). Especially useful for applications running in a network
environment.

Parameter:
hJob: List & Label job handle

IpszPath: Valid path with a concluding backslash "\"

Return Value:
Error code

Hints:

The preview file(s) will be stored in this path. The file name is the project's name, the file extension is ".LL".
The preview file can be archived, sent or viewed whenever needed.

If the path is NULL or ", the path in which the project file is stored is taken.
This command must be called before the first call to L/Print() in the print loop.

See also:
LIPrintStart, LIPrintWithBoxStart

LIPrint

Syntax:
INT L1Print (HLLJOB hJob);

Task:
Output of all objects on the printer.

Parameter:
hJob: List & Label job handle

130

API Reference Function Reference

Return Value:
Error code

Hints:

Normal objects and the header of a table object (see option LL_OPTION_DELAYTABLEHEADER) are printed.
A table object has to be filled with calls of L/PrintFields() afterwards. LIPrint is responsible for a page break.

Label/card projects: As long as L/Print() returns LL_WRN _REPEAT DATA, LIPrint() must be called again, so
objects that have caused a page break must be printed again on the next label /page.

This function is described explicitly in the chapter "Further Programming Basics"

See also:
LIPrintFields, LIPrintEnableObject

LIPrintAbort

Syntax:
INT LlPrintAbort (HLLJOB hJob);

Task:
Aborts the print (an incomplete page will remain incomplete or may not be printed).

Parameter:
hJob: List & Label job handle

Return Value:
Error code

Hints:
Is necessary to abort the print by code if LIPrintWithBoxStart() is not used and print abortion is necessary.

The difference to the 'normal' end, i.e. no longer having to call L/Print() or LIPrintFields() is that data which is
still in the printer driver is discarded, so that the print may be ended halfway through a page.

The L/Print...() calls following this call will return LL USER ABORTED, so your print loop will be ended
automatically.

Example:

HLLJOBhJob;
hJob = L1JobOpen (0) ;

if (Ll1PrintStart (hJob, LL_PROJECT LABEL, "test.lbl",
LL_PRINT NORMAL) == 0)

{
for all data records

{

<... etc...>
if (bDataError)
LlPrintAbort (hJob) ;
}
L1PrintEnd (hJob) ;
}
else
MessageBox (NULL, "error", "List & Label", MB OK);
L1lJobClose (hJob) ;

See also:
LIPrintStart, LIPrintWithBoxStart, LIPrintEnd

LIPrintCopyPrinterConfiguration

Syntax:
INT LlPrintCopyPrinterConfiguration (HLLJOB hJob, LPCTSTR lpszFilename, INT nFunction);

Task:
Allows saving and restoration of the printer configuration file.

Parameter:
hJob: List & Label job handle

IpszFilename: File name of the printer configuration file with file extension

131

API Reference Function Reference

nFunction: Action

Action Meaning

LL PRINTERCONFIG _SAVE | Saves the printer configuration file of the
currently opened project in a file with the
name IpszFilename.

LL PRINTERCONFIG - Copies the previously saved configuration

RESTORE file (created with
LL PRINTERCONFIG _SAVE) back to the
current project.

Return Value:

Error code (always 0)

Hints:
It is important that LL_PRINTERCONFIG_RESTORE is called before(!) LIPrint()!

Example:

The following principle should be used for hand-made copies on a temporary printer, that is, a user can
choose to temporarily change the printer using the printer dialog box, and choose multiple copies. Usually
the second and following passes would print to the default printer, which is not intended.

for each copy
{
LlPrintWithBoxStart(...)
if (first copy)
{
L1PrintOptionsDialog(...);
LlPrintCopyPrinterConfiguration (hJob, "curcfg.~~~",
LL_PRINTERCONFIG_SAVE) ;
}

else

{
LlPrintCopyPrinterConfiguration (hdob, "curcfg.~~~",
LL_PRINTERCONFIG_ RESTORE) ;

. LlPrint (), LlPrintFields(), ...
}
See also:

LIPrintStart, LIPrintWithBoxStart, LISetPrinterToDefault, LISetPrinterInPrinterFile,
LIGetPrinterFromPrinterFile, LISetPrinterDefaultsDir

LIPrintDbGetRootTableCount

Syntax:
INT L1PrintDbGetRootTableCount (HLLJOB hdJob) ;

Task:

Returns the number of tables at the root level. Necessary to correctly display a progress bar.
Parameter:

hJob: List & Label job handle

Return Value:
Number of tables
Hints:
See the hints in chapter "Printing Relational Data".

See also:

LIDbAddTable, LIDbAddTableRelation, LIDbAddTableSortOrder, LIPrintDbGet-CurrentTable,
LIPrintDbGetCurrentTableSortOrder, LIPrintDbGetCurrentTableRelation

LIPrintDbGetCurrentTable

Syntax:

INT L1PrintDbGetCurrentTable (HLLJOB hJob, LPTSTR pszTableID, UINT nTableIDLength, BOOL
bCompletePath) ;

132

API Reference Function Reference

Task:
This function returns the table that is currently printed/filled.

Parameter:
hJob: List & Label job handle

pszTablelD: Buffer in which the string is to be stored
nTablelDLength: Size of buffer.

bCompletePath: If true, the complete table hierarchy will be returned, e.g. "Orders > OrderDetails". If false,
only the table name (e.g. "OrderDetails") is returned.

Return Value:
Error code
Hints:
See the hints in chapter "Printing Relational Data".

See also:

LIDbAddTable, LIDbAddTableRelation, LIDbAddTableSortOrder, LIPrintDbGetCurrentTableSortOrder,
LIPrintDbGetCurrentTableRelation

LIPrintDbGetCurrentTableFilter

Syntax:
INT Ll1PrintDbGetCurrentTableFilter (HLLJOB hJob, PVARIANT pvFilter, PVARIANT pvParams) ;

Task:
This function returns the current table filter in data source native syntax. The translation has to be performed
in the LL_ QUERY EXPR2HOSTEXPRESSION callback. This callback is triggered for each part of the filter
expression that is used in the Designer.

Parameter:
hJob: List & Label job handle

PVFilter. This parameter receives the translated filter expression. As usual for VARIANTSs, it must be
initialized before (Variantlnit()) and freed after use (VariantClear()).

pvParams: If the filter expression uses parameters (see callback documentation), this argument receives a
VARIANTARRAY with the parameter values. As usual for VARIANTS, it must be initialized before (Variantlnit())
and and freed after use (VariantClear()).

Return Value:
Error code

See also:
LIDbAddTable, LL_ QUERY EXPR2HOSTEXPRESSION

LIPrintDbGetCurrentTableRelation

Syntax:
INT L1PrintDbGetCurrentTableRelation (HLLJOB hJob, LPTSTR pszRelationID, UINT
nRelationIDLength) ;

Task:

Queries the ID of the current subrelation to be printed. The ID can also be empty if a subtable has been
inserted in the Designer using a filter. In this case your code should ideally pre-filter the table at database
level (faster) or alternatively iterate the entire table and leave the filtering to List & Label (much slower).

Parameter:
hJob: List & Label job handle

pszRelationID: Buffer in which the string is to be stored.
nRelationIDLength: Size of buffer.

Return Value:
Error code

133

API Reference Function Reference

Hints:
See the hints in chapter "Printing Relational Data".

See chapter "Important Remarks on the Function Parameters of DLLs" concerning the buffer return value.

See also:

LIDbAddTable, LIDbAddTableRelation, LIDbAddTableSortOrder, LIPrintDbGetCurrentTable,
LIPrintDbGetCurrentTableSortOrder

LIPrintDbGetCurrentTableSortOrder

Syntax:

INT L1PrintDbGetCurrentTableSortOrder (HLLJOB hJob, LPTSTR pszSortOrderID, UINT
nSortOrderIDLength) ;

Task:

This function returns the current table sort order to be printed. If multiple (stacked) sortings are supported
(see LIDbAddTableEx()), a tab separated list is returned.

Parameter:
hJob: List & Label job handle

pszSortOrderID: Buffer in which the string is to be stored.
nSortOrderIDLength: Size of buffer.

Return Value:
Error code

Hints:
See the hints in chapter "Printing Relational Data".

See chapter "Important Remarks on the Function Parameters of DLLs" concerning the buffer return value.

See also:

LIDbAddTable, LIDbAddTableRelation, LIDbAddTableSortOrder, LIPrintDbGetCurrentTable,
LIPrintDbGetCurrentTableRelation

LIPrintDeclareChartRow

Syntax:
INT LlPrintDeclareChartRow (HLLJOB hJob, UINT nFlags);

Task:
This function is used to inform the chart objects contained in the project that data is available.

Parameter:
hJob: List & Label job handle

nFlags: Specifies the chart type for which data is available

Return Value:
Error code

Hints:
The following flags may be used with this function:

LL DECLARECHARTROW FOR_OBJECTS: informs chart objects that data is available.

LL DECLARECHARTROW FOR TABLECOLUMNS: informs chart objects contained in table columns that
data is available.

Please note the hints in the chart chapter of this manual.

This call does not actually print the objects, but only tells them to store the current data. Only a call to
LIPrint() (chart objects) or L/PrintFields() (charts in table columns) actually prints the charts.

Example:
// while data to put into chart object...
. LlDefineChartFieldExt (...);

134

API Reference Function Reference

LlPrintDeclareChartRow (hJob, LL DECLARECHARTROW FOR OBJECTS) ;

// now print chart object
ret = L1Print();

See also:
LIDefineChartFieldExt, LIDefineChartFieldStart

LIPrintDidMatchFilter

Syntax:
INT LlPrintDidMatchFilter (HLLJOB hdJob) ;

Task:
Specifies whether the last data record printed matched the filter provided by the user, i.e. if it was really
printed.

Parameter:
hJob: List & Label job handle

Return Value:
<0: Error code; 0: not printed; 1: printed

Hints:
This function can only be called after LIPrint() / LIPrintFields().

Example:

ret = L1Print();
if (ret == 0 && LlPrintDidMatchFilter (hJob))
++ nCountOfPrintedRecords;

See also:
LIPrintGetFilterExpression, LIPrintWillMatchFilter, LL NTFY_FAILS FILTER-Callback

LIPrintEnableObject

Syntax:

INT LlPrintEnableObject (HLLJOB hJob, LPCTSTR lpszObject, BOOL bEnable);
Task:

Enables the object to be printed or disables it in order to tell List & Label to ignore it.
Parameter:

hJdob: List & Label job handle
IpszObject: Object name, see below
bEnable: TRUE: Object can be printed; FALSE: Object should be ignored

Return Value:
Error code (important!)

Hints:
The object name can be " (empty) to address all objects, otherwise it must be the object name (entered by
the user) with the prefix ":".
If the user is able to change objects and object names in the Designer, it is important to ask for the return
value to test whether the object exists at all!
This function is particularly important for filling several independent tables. Before calling L/Print(), all table
objects must be enabled.

Example:
L1PrintEnableObject (hJdob, "", TRUE);
LlPrintEnableObject (hJob, ":AuthorList", FALSE);

See also:

LIPrint, LIPrintFields

135

API Reference Function Reference

LIPrintEnd

Syntax:
INT Ll1PrintEnd (HLLJOB hJob, INT nPages);

Task:
Ends the print job.

Parameter:
hJob: List & Label job handle

nPages: Number of empty pages desired after the print

Return Value:
Error code

Hints:
The behavior is described in the programming part of this manual.

Please always use L/PrintEnd() if you have used L/PrintStart() or LIPrintWithBoxStart() and these commands
were not aborted with an error, otherwise resource and memory losses may result.

Example:

HLLJOB hdJob;
hJob = L1JobOpen (0) ;

if (LlPrintStart (hJob, LL_PROJECT_LABEL, "test.lbl", LL_PRINT NORMAL) == 0)
{
<... etc...>
L1PrintEnd (hJob, 0);
}
else
MessageBox (NULL, "error", "List & Label", MB OK);
LlJobClose (hJob) ;

See also:
LIPrintStart, LIPrintWithBoxStart, LIPrintFieldsEnd

LIPrinterSetup

Syntax:
INT LlPrinterSetup (HLLJOB hJob, HWND hWnd, UINT nObjType, LPCTSTR lpszObjName) ;

Task:
Opens a printer selection window and saves the user's selection in the printer definition file.

Parameter:
hJob: List & Label job handle

hWnd: Window handle of the calling program

nObjType:
Value Meaning
LL PROJECT LABEL for labels
LL PROJECT CARD for cards
LL PROJECT LIST for lists

IpszObjName: Valid project file name with path and file extension

Return Value:
Error code

Hints:

Must be called before LIPrint(WithBox)Start(). Allows printer selection without having to perform a printing
process (as you must do when using L/PrintOptionsDialog()).

We do not recommend this function, L/PrintOptionsDialog() is much more flexible.

See also:
LIPrintStart, LIPrintWithBoxStart, LIPrintOptionsDialog, LIPrintGetPrinterinfo, LISetPrinterinPrinterFile

136

API Reference Function Reference

LIPrintFields

Syntax:
INT LlPrintFields (HLLJOB hdJob) ;

Task:
Output of a table line.

Parameter:

hJob: List & Label job handle
Return Value:

Error code or command

Hints:
LIPrintFields() prints a data line in all non-hidden tables if the line matches the filter condition.
With the return value LL_ WRN REPEAT DATA, List & Label informs you that you have to start a new page
for the entry. With the corresponding L/Print() on the next page the record pointer should not be moved to
the next record.
If more tables are added via LIDbAddTable() the return value also can be LL WRN TABLECHANGE. Please
refer to chapter "Printing Relational Data" for further information.
The exact behavior is described in the programming part of this manual.

See also:

LIPrint, LIPrintEnableObject

LIPrintFieldsEnd

Syntax:
INT LlPrintFieldsEnd (HLLJOB hdJob) ;

Task:
Prints (tries to print) the footer on the last page and appended objects.

Parameter:
hJob: List & Label job handle

Return Value:
Error code

Hints:
Only needed in list projects.

Is necessary to make sure that the footer is printed, even if no other normal field data is available.

If the return value is LL WRN REPEAT DATA, the footer could not be printed on the (last) page.
LIPrintFieldsEnd() might have to be called multiple times to print the footer on another page.

If more tables are added via LIDbAddTable() the return value also can be LL_ WRN TABLECHANGE. Please
refer to chapter "Printing Relational Data" for further information.

Example:

HLLJOB hJob;
hJob = L1JobOpen (0) ;

if (LlPrintStart (hJob, LL PROJECT LIST, "test.lst",
LL_PRINT_NORMAL) == 0)

{
<... etc...>

<data finished>
while (LlPrintFieldsEnd(hJob) == LL_WRN REPEAT DATA)
{
<define variables for next page>
// allow user to abort
L1lPrintUpdateBox (hJob)
}

L1PrintEnd (hJob, 0);

137

API Reference

Function Reference

else
MessageBox (NULL, "Error", "List & Label", MB OK);
LlJobClose (hJob) ;

See also:
LIPrintEnd

LIPrintGetChartObjectCount

Syntax:

INT Ll1PrintGetChartObjectCount (HLLJOB hJob, UINT nType) ;

Task:
Returns the number of chart objects in the current project.

Parameter:
hJob: List & Label job handle

nType: Location of chart

Return Value:
Error code or number of charts

Hints:
nType must be one of the following:

LL GETCHARTOBJECTCOUNT CHARTOBJECTS: Returns the number of chart objects, excluding those

placed in table columns.

LL GETCHARTOBJECTCOUNT CHARTOBJECTS BEFORE TABLE: Returns the number of chart objects

before the table in the print order.

LL GETCHARTOBJECTCOUNT CHARTCOLUMNS: Returns the number of chart columns.

This function can be used to optimize the printing loop. More hints can be found in the chart chapter of this

manual.

See also:
LIPrint

LIPrintGetCurrentPage

Syntax:
INT LlPrintGetCurrentPage (HLLJOB hdJob) ;

Task:

Returns the page number of the page currently printing.
Parameter:

hJob: List & Label job handle
Return Value:

<0: Error code

>=0: page number

Hints:

This function can only be used if a print job is open, i.e. after LIPrint/WithBox/Start().

[t is the same page number that is returned by the Page() function in the Designer, or by

LiPrintGetOption(thJob, LL_ PRNOPT PAGE);

See also:
LIPrint

LIPrintGetFilterExpression

Syntax:

INT LlPrintGetFilterExpression (HLLJOB hJob, LPTSTR lpszBuffer,

INT nBufSize);

138

API Reference Function Reference

Task:
Gets the chosen filter condition (if the project has assigned one).

Parameter:
hJob: List & Label job handle

IpszBuffer: Buffer in which the string is to be stored
nBufSize: Size of the buffer

Return Value:
Error code

Hints:
This function can only be used if a print job is open, i.e. after LIPrint/WithBox/Start().

See chapter "Important Remarks on the Function Parameters of DLLs" concerning the buffer return value.

See also:
LIPrintWillMatchFilter, LIPrintDidMatchFilter

LIPrintGetltemsPerPage

Syntax:
INT LlPrintGetItemsPerPage (HLLJOB hdJob);

Task:

Returns the number of labels on a page (no. of columns * no. of lines).
Parameter:

hJob: List & Label job handle
Return Value:

<0: error code
>=0: number of labels

Hints:
1 is always returned for LL_PROJECT LIST.
Can be used to calculate the total number of output pages. See hints in the programming part of this manual.

See also:
LIPrintGetltemsPerTable

LIPrintGetOption

Syntax:
INT L1PrintGetOption (HLLJOB hJob, INT nIndex);

Task:
Returns the various print options which are set by the user in the L/PrintOptionsDialog().

Parameter:

hJob: List & Label job handle

nindex: One of the values listed below
Return Value:

Setting chosen by the user

Hints:

In addition to the constants listed for L/PrintSetOption(), there are several modified or additional (read-only)
settings:

LL_PRNOPT_COPIES_SUPPORTED

Returns a flag indicating whether the currently selected copies count is supported by the printer (this is
usually important for list projects only).

Important: This function will - if successful - set the printer copies in the driver!

139

API Reference Function Reference

If it is not successful, the LL_PRNOPT_COPIES must be set to 1 and the copies must be made manually, if
needed.

LL_PRNOPT_UNIT

This option returns the measurement units set in the system settings. Returned values are one of the
following constants:

Value Meaning

LL UNITS MM DIV 10 1/10 mm

LL UNITS MM _ DIV 100 1/100 mm (default on metric systems)

LL UNITS MM DIV _1000 1/1000 mm

LL UNITS INCH DIV 100 1/100 inch

LL UNITS INCH DIV 1000 1/1000 inch (default on imperial systems)

LL UNITS SYSDEFAULT - Default low resolution on the system
LORES

LL UNITS SYSDEFAULT - Default high resolution on the system
HIRES

LL UNITS SYSDEFAULT Default resolution on the system

LL_PRNOPT_USE2PASS

Returns if the printing process uses the two-pass method, because the Tota/Pages$() function has been
used.

LL_PRNOPT_PRINTORDER

Returns the print order of the (labels/file cards) in the project. Default: LL PRINTORDER HORZ LTRB
(horizontal, from top left to bottom right)

LL_PRNOPT_DEFPRINTERINSTALLED

Returns a flag indicating whether the operating system has a default printer

LL_PRNOPT_JOBID

Use this option after L/Print() to determine the job number of the print job from the spooler.
This ID can be used with the Windows-API functions to control the execution of the print job.

See also:
LIPrintSetOption, LIPrintOptionsDialog, LIPrintGetOptionString

LIPrintGetOptionString

Syntax:
INT L1PrintGetOptionString (HLLJOB hJob, INT nIndex, LPTSTR pszBuffer, UINT nBufSize);

Task:
Returns various print option string settings.

Parameter:
hJob: List & Label job handle

nindex: See LIPrintSetOptionString()
pszBuffer: Address of buffer for the string
nBufSize: Maximum number of characters to be copied

Return Value:
Error code

Hints:
See LIPrintSetOptionString

See chapter "Important Remarks on the Function Parameters of DLLs" concerning the buffer return value.

140

API Reference Function Reference

See also:
LIPrintSetOption

LIPrintGetPrinterinfo

Syntax:

INT Ll1PrintGetPrinterInfo (HLLJOB hJob, LPTSTR lpszPrn, UINT nPrnBufSize, LPTSTR lpszPort, UINT
nPortBufSize);

Task:
Returns information about the target printer.

Parameter:
hJob: List & Label job handle

IpszPrn: Address of buffer for the printer name
nPrnBufSize: Length of the buffer IpszPrn
IpszPort: Address of buffer for the printer port
nPortBufSize: Length of the buffer lpszPort

Return Value:
Error code

Hints:
Examples for printer names are 'HP DeskJet 500' or 'NEC P6', for printer port 'LPT2:' or \\server\printer1'

In case of an export, the printer contains the description of the exporter and the port is empty.
See chapter "Important Remarks on the Function Parameters of DLLs" concerning the buffer return value.

See also:
LIPrintStart, LIPrintWithBoxStart

LIPrintGetProjectParameter

Syntax:

INT LlPrintGetProjectParameter (HLLJOB hLlJob, LPCTSTR pszParameter, BOOL bEvaluated, LPTSTR
pszBuffer, INT nBufSize, LPUINT pnFlags)

Task:
Returns the value of a project parameter

Parameter:
hJob: List & Label job handle

pszParameter: Parameter name. May be NULL (see hints)
pszBuffer: Address of buffer for contents. May be NULL (see hints)

bEvaluated: |f the parameter is of the type LL_ PARAMETERFLAG_FORMULA, this flag decides whether
the parameter should be evaluated first.

nBufSize: Size of the buffer (in TCHARS)

Return Value:
Error code or required buffer size

Hints:
This function cannot be called before LIPrint/WithBox]Start()!

If pszParameter is NULL, a semicolon-separated list of all USER parameters is returned.

If pszBuffer is NULL, the return value equals the size of the required buffer (in TCHARS) including the
termination.

See chapter "Important Remarks on the Function Parameters of DLLs" concerning the buffer return value.

See also:
LISetDefaultProjectParameter, LIGetDefaultProjectParameter, LIPrintGetProjectParameter

141

API Reference Function Reference

LIPrintlsChartFieldUsed

Syntax:
INT Ll1PrintIsChartFieldUsed (HLLJOB hJob, LPCTSTR lpszFieldName) ;

Task:
Specifies whether the given chart field is used in one of the expressions or conditions of the project.

Parameter:
hJob: List & Label job handle

IpszFieldName: Chart field name

Return Value:

Value Meaning

1 Chart field is used

0 Chart field is not used
LL ERR UNKNOWN Chart field is not defined

A valid value is greater than 0. If the value is less than O, it shows an errorcode. Please see chapters "General
Notes About the Return Value" and "Error Codes" for further details.

Hints:
This function can only be called after L/PrintStart() or LIPrintWithBoxStart().

This function needs LL_OPTION_NEWEXPRESSIONS to be set to true (default).

As calling LIDefineChartFieldStart() clears the "used" flags, this function will return LL_ERR_UNKNOWN or 0
afterwards, regardless of whether the field is actually used or not. Therefore do not use
LIDefineChartFieldStart() after LIPrint/WithBox]Start().

Instead of using a specific field name, wildcards can be used. For further information see
LIPrintlsFieldUsed|).

Example:

if (L1PrintIsChartFieldUsed (hJob, "Month") == 1)
LlDefineChartFieldExt (hJob, "Month", <...>);

See also:
LIPrintStart, LIPrintWithBoxStart, LIPrintlsVariableUsed, LIPrintlsFieldUsed

LIPrintisFieldUsed

Syntax:
INT Ll1PrintIsFieldUsed (HLLJOB hJob, LPCTSTR lpszFieldName) ;

Task:

Specifies whether the given field from the loaded project is used in one of the expressions or conditions of
the project. To query the used fields even before starting a print job, the usage of L/GetUsed/dentifiers is
preferable.

Parameter:
hJob: List & Label job handle

IpszFieldName: Field name

Return Value:

Value Meaning

1 Field is used

0 Field is not used
LL ERR_ UNKNOWN Field is not defined

A valid value is greater than 0. If the value is less than 0, it shows an errorcode. Please see chapters "General
Notes About the Return Value" and "Error Codes" for further details.

Hints:
This function can only be called after L/PrintStart() or LIPrintWithBoxStart().

This function needs LL_OPTION_NEWEXPRESSIONS to be set to true (default).

142

API Reference Function Reference

As calling L/DefineFieldStart() clears the "used" flags, this function will return LL_ ERR UNKNOWN or 0
afterwards, regardless of whether the field is actually used or not. Therefore do not use L/DefineFieldStart()
after LIPrint{WithBox]Start().

Instead of using a specific field name, wildcards can be used. This is especially useful if you pass your fields
ordered hierarchically, e.g. all fields from the "Article" table use "Article." as prefix. Simply do a search for
"Article.*" to find out whether the table has been used at all by the user.

Example:

if (L1lPrintIsFieldUsed (hJob, "Name") == 1)
LlDefineFieldExt (hJob, "Name", <...>);

See also:

LIPrintStart, LIPrintWithBoxStart, LIPrintlsVariableUsed

LIPrintisVariableUsed

Syntax:

Task:

INT LlPrintIsVariableUsed (HLLJOB hJob, LPCTSTR lpszFieldName) ;

Specifies whether the given variable is used in one of the expressions or conditions of the project. Note the
hints for L/IPrinti/sFieldUsed.

Parameter:

hJob: List & Label job handle

IpszFieldName: Field name

Return Value:

Hints:

Value Meaning

1 Variable is used

0 Variable is not used
LL ERR_ UNKNOWN Variable is not defined

A valid value is greater than 0. If the value is less than 0, it shows an errorcode. Please see chapters "General
Notes About the Return Value" and "Error Codes" for further details.

This function can only be called after L/PrintStart() or LIPrintWithBoxStart().
This function needs LL_OPTION_NEWEXPRESSIONS to be set to true (default).

As calling L/DefineVariableStart() clears the "used" flags, this function will return LL_ERR_UNKNOWN or 0O
afterwards, regardless of whether the field is actually used or not. Therefore do not use
LIDefineVariableStart() after LIPrint[WithBox|Start().

Instead of using a specific variable name, wildcards can be used. For further information see
LIPrint/sFieldUsed|).

Example:

if (L1PrintIsVariableUsed (hJob, "Name") == 1)
LlDefineVariableExt (hJob, "Name", <...>);

See also:

LIPrintStart, LIPrintWithBoxStart, LIPrintlsFieldUsed

LIPrintOptionsDialog

Syntax:

Task:

INT Ll1PrintOptionsDialog (HLLJOB hJob, HWND hWnd, LPCTSTR lpszText);

Calls a print option selection window and enables the user to select print-specific settings.

Parameter:

hJob: List & Label job handle
hWnd: Window handle of the calling program

143

API Reference Function Reference

IpszText: Text to be passed in the dialog, e.g. 'Only 55 labels will be printed'
Return Value:
Error code

Hints:

This function is equivalent to L/PrintOptionsDialogTitle() with NULL as dialog title. See this section for further
hints.

See also:
LIPrinterSetup, LIPrintSetOption, LIPrintGetOption, LIPrintOptionsDialogTitle

LIPrintOptionsDialogTitle

Syntax:
INT L1PrintOptionsDialogTitle (HLLJOB hJob, HWND hWnd, LPCTSTR lpszTitle, LPCTSTR lpszText);

Task:
Calls a print option selection window and enables the user to select print-specific settings.

Parameter:
hJob: List & Label job handle

hWnd: Window handle of the calling program

IpszTitle: Dialog title

IpszText: Text to be passed in the dialog, e.g. 'Only 55 labels will be printed'
Return Value:

Error code

Hints:
The following settings can be made:

Printer (or reference printer for export)

Export destination

Page number of the first page (if not hidden)

Number of copies required (if this has not been removed by L/PrintSetOption())

Starting position with LL PROJECT LABEL, LL PROJECT CARD, if more than one label/file card per page
exists

Print destination

Page range (print from ... to ...)

Default values can be defined with L/PrintSetOption(). This function must be called after L/PrintStart() /
LIPrintWithBoxStart() but before calling L/Print() for the first time.

The number of copies might have to be evaluated by the programmer as some printer drivers do not have
the relevant function implemented. See programmer's hints in this manual.

The function L/PrinterSetup(...) allows you to call a print selection dialog without further settings.

See also:
LIPrinterSetup, LIPrintSetOption, LIPrintGetOption, LIPrintOptionsDialog

LIPrintResetProjectState

Syntax:
INT LlPrintResetProjectState (HLLJOB hdJob) ;

Task:
Resets the print state of the whole project, so that printing starts as if L/Print(WithBox)Start() has just been
called.

Parameter:

hJob: List & Label Job handle

Return Value:
Error code

144

API Reference Function Reference

Hints:
This API resets the print state of the whole project (objects, page numbers, user and sum variables etc).

This function can be used for mail merge tasks.

Example:

<start print job>

<while letters have to be printed>

{
<get record>
<print one letter>
<if no error>

LlPrintResetProjectState (hJob)

<get next record of the database>
<advance to next record>

}

<end print job>

LIPrintSelectOffsetEx

Syntax:

INT LlPrintSelectOffsetEx (HLLJOB hJob, HWND hWnd) ;
Task:

Opens a dialog in which the user can choose the first label's position in the label array.
Parameter:

hJob: List & Label job handle
hWnd: Window handle of the calling application

Return Value:
Error code

Hints:
Not applicable for list projects!

Default values can be defined with L/PrintSetOption(). This function must be called after L/PrintStart() /
LIPrintWithBoxStart() but before calling L/Print() for the first time.

The offset can be set and read via LL_PRNOPT_OFFSET.
The dialog is the same as the one offered by the L/PrintOptionsDialog/Title]().
The return value is in the range of 0 to (MAX X*MAX Y-1).

See also:
LIPrintOptionsDialog

LIPrintSetBoxText

Syntax:

INT L1PrintSetBoxText (HLLJOBR hJob, LPCTSTR lpszText, INT nPercentage);
Task:

Sets text and meter percentage value in the abort dialog box.
Parameter:

hJob: List & Label job handle
IpszText: Text which should appear in the box
nPercentage: Progress percentage

Return Value:
Error code

Hints:
To make the text multi-line, line feeds (\x0a') can be inserted.

Unchanged texts or NULL pointers are not re-drawn to avoid flickering, unchanged percentage values or -
1"are also ignored.

145

API Reference Function Reference

Example:
HLLJOB hJob;

hJob = L1JobOpen (0) ;

if (L1PrintWithBoxStart (hJob, LL_PROJECT LABEL, "test.lbl", LL PRINT_NORMAL,

LL BOXTYPE NORMALMETER, hWnd, "print") == 0)
{
LlPrintSetBoxText (hJob, "starting...", 0);
<... etc...>

L1PrintEnd (hJob) ;

L1PrintSetBoxText (hJob, "done", 100);
}
else

MessageBox (NULL, "error", "List & Label", MB_OK);
LlJobClose (hJob) ;

See also:
LIPrintWithBoxStart, LIPrintUpdateBox, LIPrint

LIPrintSetOption

Syntax:
INT Ll1PrintSetOption (HLLJOB hJdob, INT nIndex, INT nValue);
Task:

Sets various print options for the print job or the print options dialog, for example to preset the number of
copies required.

Parameter:
hJob: List & Label job handle

nindex:

LL_PRNOPT_COPIES

Number of copies to be preset in the print dialog box. A value of LL COPIES HIDE will hide the "copies"
option. The task of supporting copies is described in the programming hints section.

Default: 1
LL_PRNOPT_FIRSTPAGE

First page of the page range that shall be printed. If "All" has been chosen, this is identical to
LL PRNOPT PAGE.

Default: INT_MIN
LL_PRNOPT_JOBPAGES

Number of pages a print job should contain if you choose LL_PRINT MULTIJOB in LiPrint/WithBox]Start().
Default: INT_MAX
LL_PRNOPT_LASTPAGE

Page number of the last page to be printed.
Default: INT_MAX
LL_PRNOPT_OFFSET

Position of the first label in the label array. The position the number refers to is defined by the print order.
Default: 0
LL_PRNOPT_PAGE

Page number of the first page printed by List & Label. If this should not be selectable, LL PAGE HIDE is the
value to be passed.

Default: 1
LL_PRNOPT_PRINTDLG_ALLOW_NUMBER_OF_FIRST_PAGE

In the print dialog, this option determines the page number that starts on the first printed page, e.g. if you
already have a cover page or other pages with page numbers.

146

API Reference Function Reference

Default: 0
LL_PRNOPT_PRINTDLG_ONLYPRINTERCOPIES

The print options dialog will only allow a copies value to be entered if the printer supports copies.

Caution: the printer copies may not be useful for labels, as these may need programmer's copies support
instead of the printer's. See chapter "Copies'".

Default: FALSE
LL_PRNOPT_UNITS
Returns the same value as L/GetOption(..., LL_OPTION _UNITS).

nValue: Sets the option corresponding to the nindex

Return Value:
Error code

See also:
LIPrintStart, LIPrintWithBoxStart, LIPrintGetOption, LIPrintOptionsDialog

LIPrintSetOptionString

Syntax:
INT Ll1PrintSetOptionString (HLLJOB hJob, INT nIndex, LPCTSTR pszValue);

Task:
Sets various print options for List & Label.

Parameter:
hJob: List & Label job handle

nindex: See below
pszValue: The new value

Return Value:
Error code
Hints:
Values for nindex:

LL_PRNOPTSTR_EXPORT

Sets the default export destination (for example "RTF", "HTML", "PDF", etc.) to be used (or shown in the print
dialog)

LL_PRNOPTSTR_ ISSUERANGES

A string containing default settings for the issue range, for example "1,3-4,10-".

LL_PRNOPTSTR_ PAGERANGES

A string containing default settings for the range(s) like shown in the printer options dialog, for example
"1,3-4,10-". Further variations are possible, e.g. "1,3,..." for uneven pages or "2,4,..." for every second page.
When using "..." the pattern will be automatically continued accordingly.

LL_PRNOPTSTR_PRINTDST_FILENAME

The default file name that the print should be saved to if "print to file" has been chosen.

LL_PRNOPTSTR_PRINTJOBNAME

You can set the job name to be used for the print spooler with this option.
You need to set it before the print job starts (that is, before the first call to L/Print()).

Example:
HLLJOBhJob;

hJob = L1lJobOpen (0) ;

// LlPrintStart(...);
L1PrintSetOptionString (hJob, LL PRNOPTSTR PRINTDST FILENAME, "c:\temp\ll.prn");

147

API Reference Function Reference

/] ..
// L1PrintEnd () ;
LlJobClose (hJob) ;

See also:
L1PrintGetOptionString

LIPrintSetProjectParameter

Syntax:

INT LlPrintSetProjectParameter (HLLJOB hLlJob, LPCTSTR pszParameter, LPCTSTR pszValue, UINT
nFlags)

Task:
Changes the value of a project parameter (see chapter "Project Parameters")

Parameter:
hJob: List & Label job handle

pszParameter: Parameter name
pszValue: Parameter value
nFlags: Parameter type (see L/SetDefaultProjectParameter()). Will only be used for new parameters.

Return value:
Error code

Hints:
This function cannot be called before L/Print/WithBox/Start()!

See also:
LISetDefaultProjectParameter, LIGetDefaultProjectParameter, LIPrintGetProjectParameter

LIPrintStart

Syntax:

INT LlPrintStart (HLLJOB hJob, UINT nObjType, LPCTSTR lpszObjName, INT nPrintOptions, INT
nReserved) ;

Task:
Starts the print job, loads the project definition.

Parameter:
hJob: List & Label job handle

nObjType: LL PROJECT LABEL, LL PROJECT LIST or LL_ PROJECT CARD
IpszObjName: The file name of the project with file extension

nPrintOptions: Print options

Value Meaning

LL PRINT NORMAL output to printer

LL PRINT PREVIEW output to preview

LL PRINT FILE output to file

LL PRINT EXPORT output to an export module that can be

defined with L/PrintSetOptionString(LL_PRN-

OPTSTR _EXPORT)
Optionally combined with LL_PRINT MULTIPLE JOBS: output in several smaller print jobs (see below) with
network spooler print.

nReserved: for future extensions

Return Value:
Error code

Hints:
Please check the return value!

148

API Reference Function Reference

nPrintOptions for LL_PRINT_ NORMAL can be OR-ed using LL_PRINT_MULTIPLE JOBS so that the print job
can be split into several smaller individual jobs. The number of the page after which the job should split can
be set with L/PrintSetOption|).

No abort dialog box is displayed, see L/Print\/VithBoxStart().

Example:
HLLJOB hJob;

hJob = L1JobOpen (0) ;

if (LlPrintStart (hJob, LL PROJECT_LABEL, "test.lbl",
LL_PRINT NORMAL) == 0)
{
<... etc ...>
L1PrintEnd (hJob) ;
}
else
MessageBox (NULL, "Error", "List & Label", MB OK);
LlJobClose (hJob) ;

See also:
LIPrintWithBoxStart, LIPrintEnd, LIPrintSetOption

LIPrintUpdateBox

Syntax:
INT LlPrintUpdateBox (HLLJOB hdJob) ;

Task:
Allows redrawing of the abort box used if you print with L/IPrintWithBoxStart().

Parameter:
hJob: List & Label job handle

Return Value:
Error code

Hints:
This is basically a message loop.

This function should be called if you run lengthy operations to get your data, as it allows the dialog box to
react to any necessary window repaint or an abort button press.

List & Label implicitly calls this function on L/Print(), LIPrintFields() or LIPrintSetBoxText() calls, so it is only
needed if your own processing lasts some time.

See also:
LIPrintWithBoxStart, LIPrintSetBoxText

LIPrintWillMatchFilter

Syntax:
INT LlPrintWillMatchFilter (HLLJOB hdJob) ;

Task:
Specifies whether the present data record matches the filter chosen by the user, i.e. whether it will be
printed with the next L/Print() or LIPrintFields() function.

Parameter:
hJob: List & Label job handle

Return Value:

<0: Error code
0: Not printed
1: Printed

Hints:
This function can only be called after L/PrintStart() or LIPrintWithBoxStart().

The function calculates the filter value using the currently defined data (variables or fields).

149

API Reference Function Reference

Example:
if (L1PrintWillMatchFilter (hJob))

See also:
LIPrintGetFilterExpression, LIPrintDidMatchFilter

LIPrintWithBoxStart

Syntax:

INT Ll1PrintWithBoxStart (HLLJOB hJob, UINT nObjType, LPCTSTR lpszObjName, INT nPrintOptions,
INT nBoxType, HWND hWnd, LPCTSTR lpszTitle);
Task:

Starts the print job and opens the project file. Supports an abort window. If you use a data provider as data
source, several project files can be passed here semicolon-separated. Then a combination print is
performed and the outputs of the individual projects are summarized as total output. You can react to the
callback LL_NTFY COMBINATIONPRINTSTEP.

Parameter:
hJob: Job handle

nObjType: LL PROJECT LABEL, LL PROJECT LIST or LL_ PROJECT CARD
IpszObjName: The file name of the project with file extension.

For combination printing with a semicolon-separated list, you can also provide your own information for the
LL NTFY COMBINATIONPRINTSTEP callback using the syntax "JOB=...". In addition to "JOB=", the
identifiers "TOC=" (Table of Contents), "IDX=" (Index) and "GTC=" (Reverse Side) are also available. Please
note that only one project type (label, card, or list) is possible for combination printing, and these cannot be
mixed. Example: "C:\temp\cover.Ist;JOB=MyValue;C:\temp\report.Ist"

nPrintOptions:
Value Meaning
LL PRINT NORMAL output to printer
LL PRINT PREVIEW output to preview
LL PRINT FILE output to file
LL PRINT EXPORT output to an export module that can be

defined with L/PrintSetOptionString(LL_PRN-
OPTSTR _EXPORT)

Optionally combined with one of the following flags:

Value Meaning

LL PRINT MULTIPLE JOBS | output in several smaller print jobs (see
below) with network spooler print.

LL PRINT REMOVE - Fields and variables not required by the

UNUSED _VARS project are removed from the internal
buffer after printing starts. This can speed
up following declarations considerably. The
recommended practice however is to query
the required data using
LIGetUsed/dentifiers() which is the better
alternative.

These options influence LL_OPTIONSTR_EXPORTS ALLOWED.

nBoxType:
Value Meaning
LL BOXTYPE - Abort box with bar meter and text
NORMALMETER
LL BOXTYPE - Abort box with bridge meter and text
BRIDGEMETER
LL BOXTYPE EMPTYABORT | Abort box with text
LL BOXTYPE - Box with bar meter and text, no abort
NORMALWAIT button

150

API Reference Function Reference

LL BOXTYPE BRIDGEWAIT Box with bridge meter and text, no abort
button

LL BOXTYPE EMPTYWAIT Box with text, no abort button

LL BOXTYPE STDABORT Abort box with system bar meter

LL BOXTYPE STDWAIT Box with bar meter, no abort button

LL BOXTYPE NONE No box.

Note that the Boxtype parameter is only listed here for compatibility with older operating systems. By
default, the standard progress bar of the operating system is used.

hWnd: Window handle of the calling program (used as parent of the dialog box)

IpszTitle: Title of the abort dialog box, also appears as text in the print manager

Return Value:

Error code
Hints:
Please check the return value!
An application modal abort dialog box is shown as soon as the print starts. Its title is defined by the passed
parameter. In the dialog box there is a percentage-meter-control and a two-line static text, both of which
can be set using L/PrintSetBoxText() to show the user the print progress, and also an abort button if required
(see below).
Example:
HLLJOB hJob;
hJob = L1JobOpen (0) ;
if (LlPrintWithBoxStart (hJob, LL_ PROJECT LABEL, "test.lbl",
LL_PRINT NORMAL, LL BOXTYPE NORMALMETER, hWnd, "print") == 0)
{
L1PrintSetBoxText (hJob, "There we go", 0);
<... etc...>
L1PrintEnd (hJob, 0);
}
else
MessageBox (NULL, "error", "List & Label", MB OK);
LlJobClose (hJob) ;
See also:

LIPrintStart, LIPrintEnd

LIProjectClose

Syntax:

Task:

HLLDOMOBJ LlProjectClose (HLLJOB hJob) ;

This function is only available starting with the Professional Edition! Closes an open project and releases
the relevant project file again. The file is not saved! Detailed application examples can be found in chapter
"'DOM Functions".

Parameter:

hJob: List & Label job handle

Return value:

Error code

Example:

See chapter "DOM Functions".

See also:

LIProjectSave, LIProjectOpen

LIProjectOpen

Syntax:

INT LlProjectOpen (HLLJOB hJob, UINT nObjType, LPCTSTR pszObjName, UINT nOpenMode) ;

151

API Reference Function Reference

Task:

This function is only available starting with the Professional Edition! Opens the specified project file. Call
LIDomGetProject() to retrieve the DOM handle for the project object afterwards. This object is the basis for
all further DOM functions. Detailed application examples can be found in chapter "DOM Functions".

Parameter:

hJob: List & Label job handle

nObjType:
Value Meaning
LL PROJECT LABEL for labels
LL PROJECT CARD for index cards
LL PROJECT LIST for lists

pszObjName: Project file name with path and file extension
nOpenMode: Combination (ORing) of a flag from each of the following three groups:

Value Meaning

LL PRJOPEN CD OPEN EXISTING File must already exist, otherwise error code
will be returned.

LL PRJOPEN CD CREATE ALWA File is always newly created. If it already

YS exists, the content is deleted.

LL PRJOPEN CD CREATE NEW Fileis newly created if it does not exist. If file
already exists, error code is returned.

LL PRJOPEN CD OPEN ALWAYS If file exists the content is used, otherwise
file is newly created.

Value Meaning
LL PRJOPEN AM_READWRITE File is opened for read/write access.
LL PRJOPEN AM_READONLY File is only opened for read access.

Value Meaning
LL PRJOPEN EM IGNORE _ Syntax errors are ignored. See notes.
FORMULAERRORS

Return value:

Hints

Error code

If the flag LL_ PRJOPEN_EM IGNORE_FORMULAERRORS is used, syntax errors in the project are ignored.
This has the advantage that projects can be successfully opened and edited even if the data structure is
unknown or undefined. As the formulas in the project are then treated as placeholders, the section with the
used variables (see LIGetUsedldentifiers()) cannot be correctly written, if you e.g. add further columns to a
table. The content of this section is left unchanged when saving. The same applies for the case where a
new table, which has not previously been used, is inserted in a report container. Therefore,
LL PRJOPEN_EM IGNORE_FORMULAERRORS must not be set for such cases. If the flag is not set,
LL NTFY_EXPRERROR can be used to collect the error messages for display.

Example:

See chapter "DOM Functions".

See also:

LIProjectSave, LIProjectClose, LIDomGetProject

LIProjectSave

Syntax:

HLLDOMOBJ LlProjectSave (HLLJOB hJob, LPCTSTR pszObjName) ;

152

API Reference Function Reference

Task:

This function is only available starting with the Professional Edition! Saves an open project. Detailed
application examples can be found in chapter "DOM Functions'".

Parameter:
hJob: List & Label job handle

pszObjName: Project file name with path and file extension. May be NULL (see notes)

Return value:
Error code

Hints
If pszObjName is NULL, the file is saved under the same name as when it was opened.

Example:
See chapter "DOM Functions".

See also:
LIProjectOpen, LIProjectClose

LIRTFCopyToClipboard

Syntax:
INT L1RTFCopyToClipboard (HLLJOB hJob, HLLRTFOBJ hRTF) ;

Task:

Copies the contents of the RTF object to the clipboard. Several clipboard formats are available: CF_TEXT,
CF_TEXTW and CF_RTF.

Parameter:
hJob: List & Label job handle

hRTF: RTF object handle

Return Value:
Error code

See also:
LIRTFCreateObject

LIRTFCreateObject

Syntax:
HLLRTFOBJ L1RTFCreateObject (HLLJOB hdJob) ;

Task:
Creates an instance of a List & Label RTF object to be used in stand-alone mode.

Parameter:
hJob: List & Label job handle

Return Value:
RTF object handle, or NULL in case of an error.

See also:
LIRTFGetText, LIRTFDeleteObject

LIRTFDeleteObject

Syntax:
INT L1RTFDeleteObject (HLLJOB hJob, HLLRTFOBJ hRTF) ;

Task:
Destroys the instance of the stand-alone RTF object.

153

API Reference Function Reference

Parameter:
hJob: List & Label job handle

hRTF: RTF object handle

Return Value:
Error code

See also:
LIRTFCreateObiject

LIRTFDisplay

Syntax:

INT LIRTFDisplay (HLLJOB hJob, HLLRTFOBJ hRTF, HDC hDC, PRECT pRC, BOOL bRestart, LLPUINT
pnState) ;

Task:

Paints the contents of the RTF object in a device context (DC). Can be used to display the RTF contents in
a window or print them to the printer.

Parameter:
hJob: List & Label job handle

hRTF: RTF object handle
hDC: DC for the device. If NULL, the standard printer will be used.

PRC: Pointer to the rect with logical coordinates (mm/10, inch/100 etc.) in which the contents will be printed.
May be NULL for a printer DC, in which case the whole printable area of the page will be used.

bRestart: If TRUE, the output will start at the beginning of the text. Otherwise it will be continued after the
point where the previous print ended, thus enabling a multi-page print.

pnState: State value used by the next LIRTFDisplay() call

Return Value:
Error code

Example:

// Create Printer-DC

HDC hDC = CreateDC (NULL, "\\\\prnsrv\\default",NULL,NULL) ;

RECT rc = {0,0,1000,1000};

BOOL bFinished = FALSE;

INT nPage = 0;

// Init document

StartDoc (hDC, NULL) ;

while (!bFinished)

{
nPage++;
UINT nState = 0;
// Init page
StartPage (hDC) ;
// Prepare DC (set coordinate system)
SetMapMode (hDC,MM ISOTROPIC) ;
SetWindowOrgEx (hDC, rc.left,rc.top,NULL) ;
SetWindowExtEx (hDC, rc.right-rc.left, rc.bottom-rc.top,NULL) ;
SetViewportOrgEx (hDC, 0, 0,NULL) ;
SetViewportExtEx (hDC, GetDeviceCaps (hDC, HORZRES) ,
GetDeviceCaps (hDC, VERTRES) ,NULL) ;
// print RTF-Text

BOOL bFinished = (L1RTFDisplay(hJob, hRTF, hDC, &rc, nPage ==
1, &nState) == LL_WRN_PRINTFINISHED) ;

// done page
EndPage (hDC) ;
}
EndDoc (hDC) ;

154

API Reference Function Reference

See also:
LIRTFCreateObject

LIRTFEditObject

Syntax:

INT L1RTFEditObject (HLLJOB hJob, HLLRTFOBJ hRTF, HWND hWnd, HDC hPrnDC, INT nProjectType, BOOL
bModal) ;

Task:

Displays the RTF editor to the user. All variables and — in case of LL_PROJECT _LIST — all fields are available
for use in expressions.

Parameter:
hJob: List & Label job handle
hRTF: RTF object handle
hWhnd: Handle of parent window or host control

hPrnDC: Reference DC of the destination (usually a printer DC). Important for the choice of available fonts.
Can be NULL, in which case the default printer is used.

nProjectType: Project type (LL_PROJECT LABEL, LL PROJECT CARD or LL_PROJECT LIST).

bModal: if TRUE, the dialog will be displayed modally. If FALSE, the control passed as hWnd will be replaced
by the RTF control. Please note, that the window created by Visual C++ MFC is not suitable for the non-
modal mode. We suggest using the RTF OCX control (cmlI31r.ocx) instead.

Return Value:

Error code

See also:
LIRTFCreateObject

LIRTFEditorinvokeAction

Syntax:
INT L1RTFEditorInvokeAction (HLLJOB hJob, HLLRTFOBJ hRTF, INT nControlID);
Task:

Allows activation of an action in the RTF control by code. This is important for in-place RTF controls (see
LIRTFEditObject()) if the hosting application provides a separate menu.

Parameter
hJob: List & Label job handle

hRTF: RTF object handle

nControllD: Control ID of the button to be activated. You can find the corresponding IDs in the "MenulD.txt"
file in your List & Label installation.

Return Value:
Error code

See also:
LIRTFCreateObject , LIRTFEditorProhibitAction, LIRTFEditObject

LIRTFEditorProhibitAction

Syntax:

INT LI1RTFEditorProhibitAction (HLLJOB hJob, HLLRTFOBJ hRTF, INT nControlID);
Task:

Disables buttons in the RTF control.
Parameter

hJob: List & Label job handle

155

API Reference Function Reference

hRTF: RTF object handle

nControllID: Control ID of the button to be disabled. You can find the corresponding IDs in the "MenulD.txt"
file in your List & Label installation.

Return Value:
Error code

See also:
LIRTFCreateObject , LIRTFEditorInvokeAction, LIRTFEditObject

LIRTFGetText

Syntax:
INT L1RTFGetText (HLLJOB hJob, HLLRTFOBJ hRTF, INT nFlags, LPTSTR lpszBuffer, UINT nBufferSize);

Task:
Returns the text of an RTF object

Parameter:
hJob: List & Label job handle

hRTF: RTF object handle

nFlags: Options (see LIRTFGetTextLength())

IpszBuffer: Address of buffer for the text

nBufferSize: Maximum number of characters to be copied

Return Value:
Error code

Hints:
See chapter "Important Remarks on the Function Parameters of DLLs" concerning the buffer return value.

Example:
HLLRTFOBJ hRTF = L1RTFCreateObject (hJob) ;
if (L1RTFEditObject (hJob, hRTF, NULL, NULL, LL_PROJECT_LABEL) >= 0)
{
INT nFlags = LL RTFTEXTMODE RTF|LL RTFTEXTMODE EVALUATED) ;
INT nLen = L1RTFGetTextLength (hJob, hRTF,nFlags) ;
TCHAR* pszText = new TCHAR[nLen+l];
L1RTFGetText (hJob, hRTF, nFlags, pszText, nLen+l);
printf ("'$s'\n\n", pszText);
delete[] pszText;

See also:
LIRTFCreateObject, LIRTFGetTextLength

LIRTFGetTextLength

Syntax:
INT LI1RTFGetTextLength (HLLJOB hJob, HLLRTFOBJ hRTF, INT nFlags);

Task:
Returns the size of the text contained in the object. Necessary to determine the required buffer size for the
text.

Parameter:

hJob: List & Label job handle
hRTF: RTF object handle

nFlags: One option from each of the two groups mentioned below must be OR-ed:

156

API Reference Function Reference

Value Description

Options for the format of the text to be retrieved:

LL RTFTEXTMODE RTF RTF-formatted text (incl. RTF control
words etc.)

LL RTFTEXTMODE PLAIN Text in plain text format

Options for the evaluation state:

LL RTFTEXTMODE RAW Text in plain format, with unevaluated
formulas if applicable

LL RTFTEXTMODE EVALUATE Text in evaluated format (all formulas

D replaced by their computed results)

Return Value:
Length of the buffer (negative in case of an error)

See also:
LIRTFCreateObject, LIRTFGetText

LIRTFSetText

Syntax:
INT L1RTFSetText (HLLJOB hJob, HLLRTFOBJ hRTF, LPCTSTR lpszText);

Task:
Sets the text in the RTF control. The format of the text (plain or RTF) is auto-detected.

Parameter:
hJob: List & Label job handle

hRTF: RTF object handle
IpszText: New contents

Return Value:
Error code

See also:
LIRTFCreateObject

LISelectFileDIgTitleEx

Syntax:

INT LlSelectFileDlgTitleEx (HLLJOB hJob, HWND hWnd, LPCTSTR pszTitle, UINT nObjType, LPTSTR
pszBuffer, UINT nBuflen, LPVOID pReserved) ;

Task:
Opens a file selection dialog with an optionally integrated preview window.

Parameter:
hJob: List & Label job handle

hWnd: Window handle of the calling program
pszTitle: Title for the dialog

nObjType:
Value Meaning
LL PROJECT LABEL for labels
LL PROJECT CARD for cards
LL PROJECT LIST for lists

Combined with LL _FILE ALSONEWV if a file name for a new (not yet existing) project can be entered.

pszBuffer, nBufSize: Buffer for the file name with file extension. Must be initialized with a file name or an
empty string.

pReserved: Reserved, set to NULL or empty (").

157

API Reference Function Reference

Return Value:
Error code

Hints:

Important for Visual Basic (and some other languages as well), if the OCX control is not used: the buffer
must be allocated and initialized by an O-terminated string.

Advantages compared to a normal CommonDialog: display of the project description, a preview sketch, the
language consistency within List & Label and the adaptation of the dialog design.

See chapter "Important Remarks on the Function Parameters of DLLs" concerning the buffer return value.

Example:
char szFilename[260 + 1];
INT nRet;

nRet = LlSelectFileDlgTitleEx (hJob, hWnd, "Report" , LL PROJECT LIST,
szFilename, sizeof (szFilename)) ;
if (nRet == OK)
{
<then do what you have to do>

}
See also:
LL OPTION_OFNDIALOG_NOPLACESBAR, LL OPTIONSTR_... PRJDESCR

LISetDebug

Syntax:
void LlSetDebug (INT nOnOff) ;

Task:
Switches the debug mode on or off.

Parameter:
nOnOff: O if debug mode is to be switched off, otherwise the following values can be additionally passed:

Value Meaning

LL DEBUG CMBTLL to switch on normal debugging-
info

LL DEBUG CMBTDWG to switch on debugging-info for
graphic functions

LL DEBUG CMBITLL - switch off debugging-info for

NOCALLBACKS notifications/callbacks

LL DEBUG CMBTLL NOSTORAGE switch off debugging-info for
storage- (L/StgSys...()-) functions

LL DEBUG CMBTLL NOSYSINFO do not issue system information
dump on LiSetDebug()

LL DEBUG CMBTLL LOGTOFILE debug output will also be
directed to a log file
(COMBIT.LOG in your
%APPDATA% directory). This
path can be determined via
LL OPTIONSTR LOGFILEPATH.

Hints:
Use the provided program Debwin to show the debug output.

If debug mode is switched on in List & Label with LiSetDebug(LL DEBUG CMBTLL), the DLL prints every
function call with the corresponding parameters and results. An '@' is added to the function names, so that
the function calls can be easily differentiated from other internal List & Label debugging output.

The output is indented in case a DLL in debugging mode calls other functions of a DLL (even itself) which
is also in debugging mode.

Further information can be found in chapter "Debug Tool Debwin'".

Example:
HLLJOB hJob;
int v;

158

API Reference Function Reference

LlSetDebug (LL_DEBUG_CMBTLL | ...);
hJob = L1lJobOpen (0) ;

v = LlGetVersion (VERSION_MAJOR) ;
LlJobClose (hJob) ;

prints approx. the following in the debugging output:

@L1JobOpen (0) = 1
@L1GetVersion(l) = 6
@L1JobClose (1)

LISetDefaultProjectParameter

Syntax:

INT LlSetDefaultProjectParameter (HLLJOB hLlJob, LPCTSTR pszParameter, LPCTSTR pszValue, UINT
nFlags)

Task:
Sets the default value of a project parameter (see chapter "Project Parameters")

Parameter:
hJob: List & Label job handle

pszParameter: Parameter name. If this parameter is NULL, all USER parameters will be deleted from the
internal list.

pszValue: Parameter value
nFlags: Parameter type. See chapter "Project Parameters" for valid values.

Return Value:
Error code

Hints:
This function should be called before L/Definelayout() and LiIPrint{WithBox]Start()!

See also:
LIGetDefaultProjectParameter, LIPrintSetProjectParameter, LIPrintGetProjectParameter

LISetFileExtensions

Syntax:

INT LlSetFileExtensions (HLLJOB hJob, INT nObjType, LPCTSTR lpszProjectExt, LPCTSTR
lpszPrintExt, LPCTSTR lpszSketchExt);

Task:
Setting of user-defined file extensions.

Parameter:
hJob: List & Label job handle

nObjType: Project type

Value Meaning
LL PROJECT LABEL for labels
LL PROJECT CARD for cards
LL PROJECT LIST for lists

IpszProjectExt: Extension

Type Default
LL PROJECT LABEL "Il

LL PROJECT CARD "crd"

LL PROJECT LIST "Ist"

IpszPrintExt: Extension for printer definitions file

Type Default
LL PROJECT LABEL "Top"
LL PROJECT CARD "crp

159

API Reference Function Reference

LL PROJECT LIST "Isp"

IpszSketchExt: Extension for file dialog sketch

Type Default
LL PROJECT LABEL "lov"
LL PROJECT CARD "crv"
LL PROJECT LIST "Isv"

Return Value:

Error code
Hints:
It is important that all 9 file extensions are different!
Please call this function before L/DefineLayout() and before the functions L/Print...Start(), preferably directly
after LIJobOpen() or LIJobOpenLCID/().
You can also get and set these extensions with LISetOptionString().
Example:
HLLJOBhJob;
int v;

hJob = L1JobOpen (0) ;

v = LlSetFileExtensions (hJob, LL PROJECT_LIST, "rpt", "rptp", "rptv");
/]

LlJobClose (hJob) ;

LISetNotificationCallback

Syntax:

FARPROC LlSetNotificationCallback (HLLJOB hJob, FARPROC lpfnNotify);
Task:

Definition of a procedure which will be called for notifications.
Parameter:

hJob: List & Label job handle
IpfnNotify: The address of a function (see below)

Return Value:
Address of the procedure if successful, NULL otherwise

Hints:
The callback function has higher priority than the message; if it is defined no message is sent, but the
callback function is called.
This function cannot be used if the .NET component, OCX or VCL controls are used.
The callback function has the following definition:
LPARAM STDCALL MyCallback (UINT nFunction, LPARAM lParam)
and must be an exported function
The definition of the parameter nFunction and IParam can be found in chapter "Callbacks and Notifications".
Example:
LPARAM STDCALL MyCallback (UINT nFunction, LPARAM lParam)
{ // 0000
HLLJOB hJob;
unsigned int wMsg;
L1SetDebug (TRUE) ;
hJob = L1lJobOpen (0) ;
v = LlSetNotificationCallback (hJob, MyCallback);
VA
LlJobClose (hJdob) ;
See also:

LIGetNotificationMessage, LISetNotificationMessage

160

API Reference Function Reference

LISetNotificationCallbackExt

Syntax:
FARPROC LlSetNotificationCallbackExt (HLLJOB hJob, INT nEvent, FARPROC lpfnNotify);

Task:
Definition of a procedure which will be called for notifications of the given event.

Parameter:
hJob: List & Label job handle

nEvent: Event-ID (LL_CMND_xxx or LL_NTFY_xxxx)
IpfnNotify: The address of a function (see below)

Return Value:
Address of the procedure if successful, NULL otherwise

Hints:
The "specialized" callback function has a higher priority than the "general" callback function or a message.
List & Label first of all searches for a specialized callback function for the event to be raised. If one is defined,
it will be called. If not, List & Label checks whether a general callback handler has been installed with
LiSetNotificationCallback(). If so, it will be called. If not, List & Label checks whether a message for the
current event has been defined using L/SetNotificationMessage(). If so, the message will be sent. This
function may not be used with the .NET component as this component already uses the API for its own
functionality.
The callback function has the following definition:
LPARAM STDCALL MyCallback (UINT nFunction, LPARAM lParam)
and must be an exported function
The definition of the parameter nFunction and IParam can be found in chapter "Callbacks and Notifications".
Example:
LPARAM STDCALL MyCallback (UINT nFunction, LPARAM lParam)
VA
HLLJOB hJob;
unsigned int wMsg;
hJob = L1JobOpen (0) ;
v = LlSetNotificationCallbackExt (hJob, LL CMND CHANGE DCPROPERTIES DOC, MyCB);
/] ...
LlJobClose (hJob) ;
See also:

LISetNotificationCallback

LiISetNotificationMessage

Syntax:

UINT LlSetNotificationMessage (HLLJOB hJob, UINT nMessage);
Task:

Definition of a message number which differs from the presetting for callback (USER) objects.
Parameter:

hJob: List & Label job handle
nMessage: The new message number

Return Value:
Error code

Hints:
The default message number has the value of the function RegisterWindowMessage('cmbtLLMessage").

The callback function has higher priority; if this is defined, no message is sent.

161

API Reference Function Reference

The definition of the parameter nFunction and IParam can be found in chapter "Callbacks and Notifications".

Example:

HLLJOBhJob;
unsigned int wMsg;

L1SetDebug (TRUE) ;

hJob = L1lJobOpen (0) ;

v = LlSetNotificationMessage (hJob, WM USER + 1);
/] .

LlJobClose (hJob) ;

See also:

LIGetNotificationMessage, LISetNotificationCallback

LISetOption

Syntax:

Task:

INT LlSetOption (HLLJOB hJob, INT nMode, INT PTR nValue);

Sets diverse options in List & Label.

Parameter:

hJob: List & Label job handle
nMode: Mode index, see below

nValue: New value

Return Value:

Hints:

Error code

Please call this function before L/Definelayout() and before the functions L/Print...Start(), preferably directly
after LIJobOpen()/LIJobOpenLCID().

LL_OPTION_ADDVARSTOFIELDS

TRUE: in list projects, the formula wizard offers variables in addition to fields in a table column formula.
FALSE: in table objects, only fields will be offered (default).
This option only affects list projects.

LL_OPTION_ALLOW_COMBINED_COLLECTING_OF_DATA_FOR_COLLECTIONCONTROLS

TRUE: If multiple report container elements use the same data source (ex. multiple charts or crosstabs etc.),
the data is passed only once to the report and is re-used by all these elements. Depending on the project,
this might yield a noticeable performance boost. The main drawback is a larger memory footprint.
Additionally, it is no longer possible to change the value of variables that influence the properties or contents
of the elements during printing (default).

FALSE: Each element gets its own data.
LL_OPTION_ALLOW_LLX_EXPORTERS

TRUE: List & Label will accept export modules that are loaded during LL_OPTIONSTR _LIXPATHLIST
FALSE: List & Label will not use export module functionality.

This option must be set before the LLXPATHLIST call.

Default: TRUE

LL_OPTION_BITMAP_OUTOFMEMORY_FORCETHROW

This means that errors in memory allocation in connection with images are consistently passed to the
outside and not just intercepted internally. The generation of potentially erroneous reports would then be
aborted at an early stage with the code LL_ERR NO_MEMORY. Possible subsequent errors or even resulting
crashes would thus be prevented. Please note, however, that reports with a single, unprocessable image
that erroneously causes such an error would no longer be generated at all.

162

API Reference Function Reference

Default: FALSE
LL_OPTION_CALCSUMVARSONINVISIBLELINES

This sets the default value for the Designer option specifying whether or not sum variables should also be
calculated if data lines are suppressed. The value selected in the Designer will then be saved in and loaded
from the project file.

Default: FALSE
LL_OPTION_CALC_SUMVARS_ON_PARTIAL_LINES

TRUE: The sum variables are updated as soon as one data line for the record has been printed.
FALSE: The sum variables are updated as soon as all data lines have been completely printed.
Default: FALSE

LL_OPTION_CALLBACKMASK

The value can be any combination of the following values:
LL CB PAGE,LL CB PROJECT, LL CB OBJECT,LL CB HELP,LL CB TABLELINE,LL CB TABLEFIELD
For the definition of parameters, please read the chapter on callbacks.

LL_OPTION_CALLBACKPARAMETER

Sets a parameter that is passed in the scCallback structure to any of the callbacks. Please refer to the
chapter on callbacks for further details.

LL_OPTION_CODEPAGE

Note: This only applies to the "A" API of the DLL.

This option sets or reads the code page which is used for all SBCS/DBCS and Unicode translations in List &
Label. This setting is used globally, so it is valid for all List & Label jobs in one task, and the hJob parameter
is ignored.

The code page has to be installed on the system, see NLS (National Language Support).

LL_OPTION_COMPAT_PROHIBITFILTERRELATIONS

This prevents the link from being created using a filter when a table sub-element is added. The dialog for
selecting the link type is not displayed and the link is always created using relations.

Default: FALSE
LL_OPTION_COMPAT_ZUGFERDXMLPATH_PREVIEWEMBEDDING

This can be used to set that the value of the PDF.ZUGFeRDXmiPath export option (path to the XML file) is
embedded in the preview file. This allows a ZUGFeRD-compliant PDF to be generated from this preview file
during subsequent PDF export actions (either interactively or via L/StgSysConvert()). However, make
absolutely sure that the path to the XML file to be embedded is correct.

Default: FALSE
LL_OPTION_COMPRESSRTF

The text of an RTF control is stored in the project file. When this option is set to TRUE, the text will be
compressed.

Set this option to FALSE if you want to see the text in the project file (for example for debugging).
Default: TRUE
LL_OPTION_COMPRESSSTORAGE

TRUE: the preview data will be compressed. This is a bit slower, but saves a lot of disk space.
FALSE: no compression (default).
LL_OPTION_CONVERTCRLF

TRUE: List & Label translates CR-LF combinations in variable and field contents to LF (and prevents duplicate
line breaks) (default).

163

API Reference Function Reference

FALSE: contents remain unchanged.
LL_OPTION_DEFAULTDECSFORSTR

This option sets the number of decimal places that the Designer function Str$() uses if the number is not
defined by the user in the Designer.

Default: 5
LL_OPTION_DEFDEFFONT

Allows you to set the handle of the font used as default for the project's default font. The handle need not
be valid after the API call, an own copy of the font will be used.

This font can be set by LL_ OPTIONSTR _DEFDEFFONT.
Default: GetStockObject(ANSI VAR FONT)
LL_OPTION_DELAYTABLEHEADER

This option defines whether List & Label prints the table header when calling L/Print() or when first printing
a table line (L/PrintFields()):

TRUE: at LIPrintFields(), thus triggered by the first table line (Default)
FALSE: at LIPrint(). Of course, if fields are used in the header line, they must be defined at the L/Print() call.
LL_OPTION_ DESIGNEREXPORTPARAMETER

See chapter "Direct Print and Export From the Designer".

LL_OPTION_ DESIGNERPREVIEWPARAMETER

See chapter "Direct Print and Export From the Designer".

LL_OPTION_ DESIGNERPRINT_SINGLETHREADED

See chapter "Direct Print and Export From the Designer".

LL_OPTION_ERR_ON_FILENOTFOUND

TRUE: if a graphic file is not found during print time LL_ERR_DRAWINGNOTFOUND will be returned
FALSE: the error will be ignored without any feedback. (Default)
LL_OPTION_ESC_CLOSES_PREVIEW

This option defines whether the "Escape" key closes the preview window. Default: FALSE.

LL_OPTION_EXPRSEPREPRESENTATIONCODE

Character code of the character that is used to divide an expression into multiple lines in the expression
wizard.

This value might have to be changed for code pages other than standard Western code page, as the default
might be used for a printable character.

LL_OPTION_FAVORITE_SETTINGS

This option defines the behavior of the property favorites. The following values can be combined.

Value Meaning
Ll FAVORITES ENABLE FAVO Favorites are editable, button is activated by default, registry settings
RITES BY DEFAULT will be ignored.

1L FAVORITES HIDE FAVORIT Favorites are not editable, button is invisible.
ES BUTTON

Default: Favorites are editable, the button shows the last state from the registry.

LL_OPTION_FONTQUALITY

(See also LL_OPTION_FONTPRECISION below)

Can be used to influence the Windows font mapper, for example to use a device font. The value set by this
option will be used for the LOGFONT.IfQuality field when a font instance is being created.

164

API Reference Function Reference

The permitted values are referenced in the MSDN documentation.
Default: DEFAULT _QUALITY.
LL_OPTION_FONTPRECISION

(See also LL_ OPTION _FONTQUALITY above)

Can be used to influence the font mapper of Windows, for example to use a device font. The value set by
this option will be used for the LOGFONT.IfOutPrecision field when a font instance is being created.

The permitted values are referenced in the MSDN documentation.
Default: OUT_STRING_PRECIS.
LL_OPTION_FORCE_DEFAULT_PRINTER_IN_PREVIEW

TRUE: printer name setting will not be passed on to the preview, so that the preview always uses the default
printer in its print routines

FALSE: printer name setting will be passed on to the preview (default)

LL_OPTION_FORCEFONTCHARSET

Selects whether all fonts in the system are offered in font selection combo boxes or whether they must
support the charset of the default LCID (or the font set with LL_OPTION_LCID). See also LL_OPTION -
SCALABLEFONTSONLY.

Default: FALSE
LL_OPTION_FORCEFIRSTGROUPHEADER

Set to TRUE to force the first group header to be printed even if the evaluated result of the "group by"
property is empty.

Default: FALSE
LL_OPTION_FORCESAVEDESIGNSCHEME

TRUE: The design scheme is saved in the project even if it is set to the default design scheme. This means
that a change to the default design scheme via LL_OPTIONSTR_DEFAULTSCHEME no longer affects existing
projects saved with this option.

FALSE: The design scheme is saved in the project only if it differs from the default design scheme.
Default: FALSE
LL_OPTION_HELPAVAILABLE

TRUE: display help buttons (default)
FALSE: do not display help buttons
LL_OPTION_IDLEITERATIONCHECK_MAX_ITERATIONS

This option is used to set the maximum number of attempts to print an object. Useful to prevent endless
loops if non-wrappable content is exceeding the available space.

Default: 0 (no limit)
LL_OPTION_IMMEDIATELASTPAGE

FALSE: the LastPage() flag will not be set before all objects have been printed (up to a table in case of a
report project).

TRUE: a non-finished object will immediately force LastPage() to be FALSE, and will reset all its appended
objects.

Default: TRUE
LL_OPTION_IMPROVED_TABLELINEANCHORING

Can affect the output for anchored table rows. Unanchored rows will be output below an anchored row that
had previously used the most space for it.

Note: Even if anchoring is not used, but lines with negative margin 'on top' are used, the option should be
disabled.

Default: TRUE

165

API Reference Function Reference

LL_OPTION_INCREMENTAL_PREVIEW

TRUE: The preview is displayed as soon as the first page has been created and further pages are added to
the display incrementally. If the user closes the preview window during printing, you will receive
LL ERR_USER ABORTED from the print functions. This error code must therefore be processed in any
case. If LIPreviewDisplay() is called at the end of printing, this API will only return when the user closes the
preview window.

FALSE: The preview is not displayed immediately, the application must explicitly call L/IPreviewDisplay() for
display.

Default: TRUE
LL_OPTION_INTERCHARSPACING

TRUE: the space between the characters for block-justified text will vary.
FALSE: only the width of spaces between words will be varied (default)

LL_OPTION_INCLUDEFONTDESCENT

TRUE: the logfont member LOGFONT.IfDescent is considered when calculating the line distances. This
leads to a wider line space but prevents extreme font descents from being cut off.

FALSE: compatible mode
LL_OPTION_KEEP_EXPORTER_CONTROL_FILES_IN_MEMORY

FALSE: For the various exporters, the exchange into the desired target format is temporarily serialized to
the hard disk during report runtime and then deserialized again by the exporter module. Depending on the
amount of data to be exported and the scope of the report, this can result in a system-related file size
limitation and impair overall performance due to 1/O operations.

TRUE: When this option is enabled, no temporary files are created and the exchange in the exporter takes
place directly in the working memory, which can lead to higher performance in addition to the possible
removal of the file size limitation. However, when using the faster working memory, its available capacity
for the executing process must also be taken into account.

Default: FALSE
LL_OPTION_LCID

When you set this option, the default values for locale-dependent parameters are set accordingly
(inch/metric unit, decimal point, thousands separator, currency symbol and fonts (see
LL_OPTION_FORCEFONTCHARSET)).

It also defines the default locale for the Loc...$() and Date$() functions.
Default: LOCALE USER DEFAULT.
LL_OPTION_LOCKNEXTCHARREPRESENTATIONCODE

Character code of the character that represents a 'line break lock' in the Designer.

This value might have to be changed for code pages other than standard western code page, as the default
might be used for a printable character.
In most cases you can also use the Code 160 (NO BREAK SPACE).

LL_OPTION_MAXRTFVERSION

Windows or Microsoft applications are supplied with many different RTF controls that support different
features and show a different behaviour.

Using this option, you can set the maximum version number of the RTF control to use in the first step. For
example, setting the option to 0x100 causes List & Label to load RTF control version 1 (if it exists). Setting
the option to 0x401 causes List & Label to try loading RTF control version 4.1. If no control with a version
smaller or equal the selected version can be loaded a control with a higher version will be used instead to
avoid a loss of data.

To not load any RTF control you should set this option to 0. Advantage is a faster start up and using less
resources. However, this also means that the RTF APl is not available, i.e. RTF functions such as ToRTF$(),
LoadFile$ or RTFtoPlainText$ etc. cannot be used.

This option must be called with job handle —1 before the fist List & Label job has been opened.

166

API Reference Function Reference

LL_OPTION_METRIC

TRUE: List & Label Designer is set to metric system

FALSE: List & Label Designer is set to imperial system (inches)
Default value depends on the system's setting.

See LL_OPTION _UNITS
LL_OPTION_MULTISECTIONPRINT MERGE

TRUE: The same printer settings are used for the table of contents (TOC), index (IDX) and reverse side (GTC)
report sections that are also used in the main project if the properties of the printers match. This means
that fewer new printer DCs need to be used and can therefore lead to better resource utilization.

FALSE: Each report section uses its own individual printer settings.
Default: FALSE
LL_OPTION_NOAUTOPROPERTYCORRECTION

FALSE: Setting interdependent properties mutually influences each other. (Default)
TRUE: Interdependent properties can be set independently.

This option is sometimes required when working with the DOM object model to prevent automatic property
switching. If e.g. the font of a paragraph is set to a Chinese font, the property "Charset" would be
automatically switched accordingly. If this is not desired, use this option to switch the behavior.

LL_OPTION_NOCONTRASTOPTIMIZATION

FALSE: Contrast optimization for table fields, charts and crosstab cells. This automatically changes from
black to white and vice versa, based on the contrast of the font color when compared to the background.
(Default)

TRUE: No contrast optimization.
LL_OPTION_NOFAXVARS

FALSE: The variables for fax are visible in the Designer (default).
TRUE: The variables for fax are not visible in the Designer.

LL_OPTION_NOFILEVERSIONUPGRADEWARNING

This option defines the behavior of the Designer when opening a project file from an older version of List &
Label.

TRUE: Conversion takes place without user interaction.

FALSE: A warning box is displayed to the user, indicating that the project file will not be editable by an older
version of List & Label once it has been saved with the current version (default).

LL_OPTION_NOMAILVARS

FALSE: The variables for email are visible in the Designer (default).
TRUE: The variables for email are not visible in the Designer.

LL_OPTION_NONOTABLECHECK

TRUE: For a list project, List & Label does not check whether at least one table object is present (default).

FALSE. List & Label performs the check and returns LL_ ERR_NO_TABLEOBJECT if the project contains no
table.

LL_OPTION_NOPARAMETERCHECK

TRUE: List & Label does not check the parameters passed to its DLL functions, which results in a higher
processing speed.

FALSE: The parameters will be checked (default).
LL_OPTION_NOPRINTERPATHCHECK

TRUE. List & Label does not check if the printers that are relevant for the project exists. If for example
network printers are used in the project, that are currently not available, waiting time will occur.

167

API Reference Function Reference

FALSE: List & Label checks if the printers that are relavant for the project exist (default).
LL_OPTION_NOPRINTJOBSUPERVISION

With this option monitoring of the print jobs can be switched on (see LL INFO_PRINTJOBSUPERVISION).
Default: TRUE.

LL_OPTION_NOTIFICATIONMESSAGEHWND

Sets the window that is to receive notification messages (callbacks) when no callback procedure is explicitly
set.

Usually events are sent to the first non-child window, starting with the window handle given in
LIDefineLayout() or LIPrintWithBoxStart(). You can modify the destination with this call.

Default: NULL (default behavior)
LL_OPTION_NULL_IS_NONDESTRUCTIVE

List & Label handles NULL-values according to the SQL-92 specification where possible. An important effect
of that is, that functions and operators, which get NULL-values as parameter or operator generally also
return NULL as the result. An example is the following Designer formula:

Title+" "+Firstname+""+Lastname

If Title is filled with NULL, the result of the formula is also NULL according to the standard. As it often can
be desired to get

Firstname+""+Lastname

instead, the option LL_OPTION _NULL IS NONDESTRUCTIVE defines that NULL-values do not result in the
complete expression to become NULL (against the specification) but according to the data type will become
"0", an empty string or an invalid date. The better alternative is however to work with NULLSafe() Designer
functions, where the replacement value can be defined exactly in case of NULL.

TRUE. NULL-values will be displayed by replacement values.
FALSE: NULL-values as operators or parameter result in NULL as function value (default).

LL_OPTION_PARTSHARINGFLAGS

This option allows you to use the variables passed to List & Label within the report sections Table of
Contents, Index and Reverse Side. The following flags can be OR-ed:

Value Meaning

LL_PARTSHARINGFLAG VARIABLES TOC (0x01) ~ Table of Contents
LL_PARTSHARINGFLAG VARIABLES IDX (0x02) ~Index
LL_PARTSHARINGFLAG VARIABLES GTC (0x04) ~ Reverse Side

LL_OPTION_PHANTOMSPACEREPRESENTATIONCODE

Character code of the character that represents a 'phantom space' in the Designer.

This value might have to be changed for code pages other than standard Western code page, as the default
might be used for a printable character.

LL_OPTION_POSTPAINT_TABLESEPARATORS

TRUE: In a table object, the cell borders will be painted only after painting the complete background so that
rounding errors during painting (background of the following line can paint over the lower frame line) are
avoided.

FALSE: Compatible mode, the cell borders will be painted directly after each cell.
LL_OPTION_PREVIEW_SCALES_RELATIVE_TO_PHYSICAL_SIZE

This option allows by using flags (0x1: Designer, 0x2: Preview Window) to decide where the preview should
match the true physical size on screen when setting the zoom to 100%.

LL_OPTION_PRINTERDCCACHE_TIMEOUT_SEC

Determines how long (in seconds) printer device contexts are cached. Please note that some printers do
not start a print job before the corresponding device context is closed. For these, you might want to change
this setting to 0. The default value is 60.

168

API Reference Function Reference

LL_OPTION_ PRINTERDEVICEOPTIMIZATION

TRUE. Printers that are effectively equal concerning their DEVMODE structs are optimized away (default).
This also means that print jobs may be collated even if there are pages with different printer settings in
between. To prevent this from happening, you may switch this option to FALSE.

FALSE: All printers are shown, print jobs are not collated.

LL_OPTION_PRINTERLESS

TRUE: List & Label uses a virtual device for the rendering. This means that no printer driver is required and
used on the system. Note that this may have a minimal impact on the positioning of the output.

Printer settings from the printer configuration file (the so-called "P-file") are not considered any further - only
the parameters contained for the export formats. Functions that influence the printer configuration file with
respect to the printer, such as LISetPrinterInPrinterFile etc., cannot be used with Printerless enabled.

FALSE: List & Label uses the printer (drivers) installed in the system for rendering (default).
This option must be called with job handle —1 before the fist List & Label job has been opened.

LL_OPTION_PROHIBIT_OLE_OBJECTS_IN_RTF

TRUE: This can be used in "Formatted Text" (RTF) objects to prevent any OLE objects from being loaded.
FALSE: OLE objects will be loaded (default).
LL_OPTION_PROHIBIT_USERINTERACTION

TRUE: No message boxes and dialogs will be displayed. Message boxes will automatically return the default
value. This option is usually set automatically in webserver environments. If the webserver detection should
fail for some reason, you can manually force the non-Ul mode via this option.

FALSE: Message boxes and dialogs are displayed (default).
LL_OPTION_PROJECTBACKUP

TRUE: A backup file is generated during editing in the Designer (default).
FALSE: No backup file is generated.

LL_OPTION_PRVZOOM_LEFT, LL_OPTION_PRVZOOM_TOP, LL_OPTION_PRVZOOM_WIDTH,
LL_OPTION_PRVZOOM_HEIGHT

Preview: the rectangle coordinates of the preview window in percentage of the screen. If this is not set (set
to -1), the positions of the window when it was last closed will be used.

LL_OPTION_PRVRECT_LEFT, LL_OPTION_PRVRECT_TOP, LL_OPTION_PRVRECT_WIDTH,
LL_OPTION_PRVRECT_HEIGHT

The same in screen pixels.

LL_OPTION_PRVZOOM_PERC

Preview: initial zoom factor in percentage (default: 100). To zoom to page width, set the value to -100.
LL_OPTION_REALTIME

TRUE: Time() and Now() will always use the current time
FALSE: The time will be fixed once when the project is loaded (default)
LL_OPTION_RESETPROJECTSTATE_FORCES_NEW _DC

TRUE: The output device context will be created new after L/PrintResetProjectState() (default).

FALSE: The device context is preserved after L/PrintResetProjectState(). s not supported by all printers, but
results in increased performance with merge print.

LL_OPTION_RESETPROJECTSTATE_FORCES_NEW_PRINTJOB

TRUE: A new print job is forced after L/PrintResetProjectState(). This option is especially of use if the same
project is printed consecutively multiple times and when it is important that every one of the prints creates
its own job in the spooler.

169

API Reference Function Reference

FALSE: Multiple reports can be merged into one print job. A new print job is only created if it is necessary
due to duplex prints (default).

LL_OPTION_RETREPRESENTATIONCODE

Character code of the character that represents a 'new line' in the Designer.

This value might have to be changed for code pages other than standard Western code page, as the default
might be used for a printable character.

LL_OPTION_RIBBON_DEFAULT_ENABLEDSTATE

TRUE: The designer and preview use the ribbon (Windows Scenic Ribbon Framework) (default). This can be
disabled in the project options dialog, in which case the classic menu is used.

FALSE: The designer and preview use the classic menu. The use of the ribbon must be explicitly enabled in
the project options dialog.

LL_OPTION_RIBBON_FORCEENABLED

TRUE: The designer and preview force the use of the ribbon (Windows Scenic Ribbon Framework). The
corresponding option in the project options dialog has no effect.

FALSE: The use of the ribbon can be enabled or disabled in the project options dialog (default).
LL_OPTION_RTFHEIGHTSCALINGPERCENTAGE

Percentage value to wrap RTF text a bit earlier so that MS Word does show RTF text completely (default:
100).

LL_OPTION_SCALABLEFONTSONLY

Here you can choose which fonts can be selected in font selection dialogs: only scalable fonts (TrueType
and Vector fonts, TRUE) or all (FALSE).

Raster fonts have the disadvantage of not being scalable, so the preview may not appear as expected.
Default: TRUE
LL_OPTION_SETCREATIONINFO

List & Label can store some information about the user (user and computer name, date and time of creation
as well as last modification) in the project file and the preview file. This can be important for tracing
modifications.

TRUE. Save info (default)
FALSE: Suppress info
LL_OPTION_SHOWPREDEFVARS

TRUE: The internal variables of List & Label will be listed in the variable selection dialog of the formula wizard
(default).

FALSE: These will be suppressed.
LL_OPTION_SKETCH_COLORDEPTH

This option sets the color depth of the sketch files for the file selection dialogs. Default is 8, i.e. 256 colors.
32 would be true color.

LL_OPTION_SKIPRETURNATENDOFRTF

RTF texts may contain blank lines at the end.
TRUE: These are removed

FALSE: The blank lines are printed (default).
LL_OPTION_SORTVARIABLES

TRUE: The variables and fields in the selection dialog are sorted alphabetically.

FALSE: The variables and fields in the selection dialog are not sorted (default).

170

API Reference Function Reference

LL_OPTION_SPACEOPTIMIZATION

TRUE. List & Label will default the "space optimization" feature for new paragraphs in text objects and new
fields (default).

FALSE: The default state will be unchecked.
This does not apply to existing objects!

LL_OPTION_SVG_TO_DIB_MAX_SIZE

Controls the maximum area (x*y) a bitmap may get (in pixel, memory consumption is about 4 times the
value!). Default is 5000000 for 32-bit applications and 10000000 for 64-bit applications.

LL_OPTION_SVG_TO_DIB_RESOLUTION

Controls the conversion of a drawing's rectangle in the project to bitmap pixel dimensions. Default is 150
for 32-bit applications and 300 for 64-bit applications.

LL_OPTION_SUPERVISOR

TRUE: All menu options are allowed, and even locked objects are not locked. This mode enables sections
that are not accessible to the user to be used without much additional programming.

FALSE. Limitations are valid (default)
LL_OPTION_SUPPORTS_PRNOPTSTR_EXPORT

TRUE: The user can choose a default exporter for the project, which will be preset in the print options dialog
FALSE: Usually means that the application sets the default exporter

The default print medium is stored in the Project file.

Default: FALSE

LL_OPTION_SUPPRESS_TOOLTIPHINTS

TRUE: The Designer does not display detailed info tooltips.
FALSE: The info tooltips are displayed.

Default: FALSE

LL_OPTION_TABLE_COLORING

LL COLORING _DESIGNER: the coloring of list objects may only be carried out by List & Label (default)

LL COLORING PROGRAM: the coloring of list objects is only carried out by notifications or callback (see
chapter "Notifications and Callbacks"); color setting in the Designer is not possible

LL COLORING _DONTCARE: the coloring is first of all carried out by the program by notification or callback
and then additionally by List & Label.

LL_OPTION_TABREPRESENTATIONCODE

Character code of the character that represents a 'tab' in the Designer.

This value might have to be changed for code pages other than standard Western code page, as the default
might be used for a printable character.

LL_OPTION_UNITS

Description and values see LL_PRNOPT _UNIT.
LL_OPTION_USEBARCODESIZES

Some barcodes have size limitations (minimum and/or maximum sizes). If this option is set to TRUE, the
user is allowed to switch on the size limitation feature so that when resizing the barcode object, only sizes
in the standard size range will be allowed.

LL_OPTION_USECHARTFIELDS

TRUE: Chart objects will get their data through the chart API.
FALSE: Compatible mode, charts get their data through L/PrintFields(). (Default)

Please read the hints in the Chart chapter of this manual.

171

API Reference Function Reference

LL_OPTION_USEHOSTPRINTER

TRUE. List & Label passes all printer device operations to the host application, which then has more freedom
but also has to work harder. See LL_ CMND HOSTPRINTER.

FALSE: List & Label manages the printer device
LL_OPTION_USESIMPLEWINDOWSPENSTYLE_FRAMEDRAWING

TRUE: The standard simple frame lines for tables and objects such as dotted, dashed, dashed-dotted, and
dashed-dotted-dotted are more effectively output directly by Windows and the PDF viewer, respectively.
May result in higher overall performance and smaller export files when creating reports.

FALSE: Uses a custom drawing method (individual objects) to output frame lines. This can lead to better
results when outputting to printers.

Default: FALSE
LL_OPTION_USE_JPEG_OR_PNG_OPTIMIZATION

TRUE: List & Label embeds JPEG or PNG files as stream into the preview (meta) files. This leads to a
significantly decreased file size but the meta files will only be readable from List & Label and not from any
third-party picture editors anymore (Default).

FALSE: JPEG or PNG files will be embedded as bitmap records into the preview (meta) files, which will
result in significantly larger file sizes.

LL_OPTION_USESVG2BMP

TRUE: SVG files will be embedded as bitmap records into the preview (meta) files, which will result in
significantly larger file sizes (Default).

FALSE: List & Label embeds SVG files as stream into the preview (meta) files. This leads to a significantly
decreased file size but the meta files will only be readable from List & Label and not from any third-party
picture editors anymore.

Note: Please note that not all SVGs can be converted 1:1 as vectors. Incorrect representations can occur,
particularly with more complex coordinate system transformations, partial transparencies and especially
with SVG filters. In this case, it may be necessary to export the respective elements as raster graphics
or to activate the "Export as Picture" property for the respective object. Alternatively, you can also use
this option to ensure that all SVGs are displayed as raster graphics (TRUE). Even then, however, display
errors may occur with certain SVGs. We recommend that you check the output carefully.

LL_OPTION_VARLISTDISPLAY

Determines the order of the variables/fields and folders in the associated tool window.

The following flag groups can be oreded:

Value Meaning
LL_OPTION VARLISTDISPLAY VARSORT DECLARA Display of variables in declaration order
TIONORDER (0x00)
LL_OPTION VARLISTDISPLAY VARSORT ALPHA Display of variables in alphabetical order
(Ox017)
Value Meaning
LL_OPTION_VARLISTDISPLAY FOLDERPOS DECLA Display folders in declaration order
RATIONORDER (0x00)
LL_OPTION VARLISTDISPLAY FOLDERPOS ALPHA Display folders in alphabetical order
(0x10)
LL_OPTION VARLISTDISPLAY FOLDERPOS TOP Display folders top
(0x20)
LL_OPTION VARLISTDISPLAY FOLDERPOS BOTTO Display folders below
M (0x30)
Default:

LL OPTION VARLISTDISPLAY FOLDERPOS TOP | LL_ OPTION VARLISTDISPLAY VARSORT ALPHA

172

API Reference Function Reference

LL_OPTION_VARSCASESENSITIVE

TRUE: Variable and field names are case-sensitive

FALSE: Variable and field names are not case-sensitive ("Name" defines the same variable as "NAME"). This
option results in a slightly lower speed. (Default)

LL_OPTION_VIRTUALDEVICE_SCALINGOPTIONS

This option is important for optimizing text placement in environments without printer drivers (see
LL OPTION PRINTERLESS). Too small a magnification can lead to "poor" placement accuracy of output, a
too large one (option value between 72 and 2400) can result in objects or parts of them not being output.
In any case, you should check the results in the target environment. Default: 600

The following values can be used:

Value Meaning
1L OPTION VIRTUALDEVICE SCALING The projectisrendered 1:1in the selected size with the screen
OPTION UNSCALED (0x00) device context as reference with the resolution/size of the

screen context - can lead to inaccuracies in the placement of
outputs if they are calculated using the device coordinates.

Ll OPTION VIRTUALDEVICE SCALING The resolution forthe outputis converted so that it is optimally
OPTION OPTIMIZE TO SCREENRES Titted to the size of the screen device context.

(Ox017)

11 OPTION VIRTUALDEVICE SCALING The resolution for the output is converted to fit the size of the

OPTION OPTIMIZE TO SCREENRES A screen device context exactly, provided that the resolution
T LEAST ONE (0x02) ~ does not have to be reduced for this purpose.

72-2400 The resolution for the output in DPI.

LL_OPTION_XLATVARNAMES

TRUE: Special characters in variable and field names will be converted to ' '. (Default)

FALSE: Variable and field names will not be modified. This has a speed advantage, but you must make sure
that the field and variable names do not contain these characters. Should be switched to FALSE when using

MBCS.
Return value:
Error Code
Hints:
Please call this function before LIDefineLayout() and before the LIPrint...Start() functions, so
preferably directly after LIJobOpen()/ LIJobOpenLCID().
Example:
HLLJOB hJob = L1lJobOpen (0) ;
L1SetOption (hJob, LLioPTIONixLATVARNAMES, FALSE) ;
/]
LlJobClose (hJdob) ;
See also:

LIGetOption, LIGetOptionString, LISetOptionString

LISetOptionString

Syntax:
INT LlSetOptionString (HLLJOB hJob, INT nMode, LPCTSTR pszValue);

Task:
Sets string options in List & Label.

Parameter:
hJob: List & Label job handle

nMode: Mode index, see below

pszValue: New value

173

API Reference

Function Reference

Return Value:

Hints:

Error code

Most of the options need to be set before LiDefinelLayout() and before the functions L/Print...Start(),
preferably directly after LIiJobOpen()/LiJobOpenlLCID(). If an option needs to be set at a different time, this
will be stated in that option's description.

LL_OPTIONSTR_CARD_PRJEXT

The file extension for a file card project. Default "crd".
LL_OPTIONSTR_CARD_PRVEXT

The file extension for the bitmap of a file card project that will be shown in the File Open dialog. Default
"crv'.

LL_OPTIONSTR_CARD_PRNEXT

The file extension for the printer definition file of a file card project. Default "crp".
LL_OPTIONSTR_CURRENCY

This represents the string that is used as currency symbol in the fstr$() function.

The default is the value of the user settings in the system, but will be set to the respective locale value on
LL OPTION_LCID.

LL_OPTIONSTR_DECIMAL

This represents the string that is used as decimal char in the fstr$() function.

The default is the value of the user settings in the system, but will be set to the respective locale value on
LL OPTION_LCID.

LL_OPTIONSTR_DEFAULTCHARTSCHEME

Sets the default design scheme for new charts independent of the set project design scheme. Setting it to
an empty string would still use the current project design scheme. Default: "combit2" (combit Pastel)

The following values can be used for this: see LL_ OPTIONSTR DEFAULTSCHEME.
LL_OPTIONSTR_DEFAULTSCHEME

Sets the default design scheme for the project. See also the LL OPTION FORCESAVEDESIGNSCHEME
option. Default: empty (or value "combit").

The following values can be used:

Value Meaning
Antarctica Antarctica
Artichoke Artichoke

Blue Blue
CityCruiser City Cruiser
Classic Classic

combit combit
combit2 combit Pastel
combit3 combit Pastel 2
combitBlue combit Blue

combitColorWheel
combitGreen
DeciduousTree

combit Color Wheel
combit Green
Deciduous Tree

DiscoPop Disco Pop
Forester Forester
GrayScale Gray Scale
Green Green
Hibernation Hibernation

174

API Reference

Function Reference

Value Meaning
HotAirBalloon Hot Air Balloon
InTheJungle In the Jungle
IntoTheGreen Into the Green
Oceanographer Oceanographer
OldTimes Old Times
Poolside Poolside

Red Red

Remix Remix
RetroForever Retro Forever
SandyDesert Sandy Desert
SummerDay Summer Day
Summermist Summer Mist
UnderWater Under Water
USERDEFINED User-Defined

LL_OPTIONSTR_DEFDEFFONT

Sets the font to be used as default for the project font.
The parameter must have the following format:

"{(R,G,B),H,L}"
R = Red intensity, G = Green intensity, B = Blue intensity
H = Height in points, L = Comma-separated fields of the LOGFONT structure (See SDK)

This DEFDEFFONT can be set using LL_OPTION_DEFDEFFONT as handle.
LL_OPTIONSTR_EMBEDDED_EXPORTS

With this option you can embed different export formats in the preview in a multi-pass procedure so that
they are also available in the viewer. Pass a semicolon-separated list of the desired formats, e.g.
"DOCX;XLS". Note that your application must support the drilldown event for this feature to be available.
The data binding of the .NET component provides this support automatically.

LL_OPTIONSTR_EXPORTS_ALLOWED

This property can be used to restrict the output list presented to the user in the L/PrintOptionsDialog/Title]()
dialog. Also, only the allowed export formats can be configured in the designer.

Pass a semicolon-separated list of allowed export IDs, see LL_OPTIONSTR_EXPORTS AVAILABLE

Example:

LlPrintStart (hJob, ...,LL PRINT EXPORT,...);

// allow only printer and preview (EXPORT sets all bits)
LlSetOptionString (hJob, LL OPTIONSTR EXPORTS ALLOWED, "PRN;PRV");
// Default should be preview!

L1PrintSetOptionString (hJob, LL_ PRNOPTSTR_EXPORT, "PRV");

// printer dialog allows user to change
Ll1PrintOptionsDialog (hJob,);

// get the final medium:

L1PrintGetOption (hJob, LL PRNOPTSTR EXPORT, sMedium, sizeof (sMedium));
// ...print job....

// finished

L1PrintEnd (hJob, 0) ;

if (strcmp (sMedium,"PRV") == 0)

LL_OPTIONSTR_EXPORTS_ALLOWED_IN_PREVIEW

This property can be used to restrict the list of possible output formats in the preview dialog.
Pass a semicolon-separated list of allowed export IDs, see LL_OPTIONSTR_EXPORTS AVAILABLE
LL_OPTIONSTR_EXPORTS_AVAILABLE

You can use this function to query the possible output media (read only).

175

API Reference Function Reference

The return value is a semicolon-separated string consisting of the abbreviations of all available output media,
e.g. "PRN;PRV;FILE;HTML;RTF" (the complete list of available output media can be found in chapter
"The Export Modules").

The other entries depend on the list of export modules found via L/SetOptionString(
LL _OPTIONSTR LLXPATHLIST).

LL_OPTIONSTR_EXPORTFILELIST

This is a read-only property.
After LIPrintEnd(), you can use this function to get a list of files that have been created by the export process.
The return value is a semicolon-separated list of the path names of the files.

This list can be very large, so please allocate sufficient buffer and check the return value of L/SetOption() on
the error value (LL_ERR BUFFERTOOSMALL).

LL_OPTIONSTR_HELPFILENAME

You can use this function to force the help file name, e.g. if you want to display your own help file.

LL_OPTIONSTR_FAX_RECIPNAME, LL_OPTIONSTR_FAX_RECIPNUMBER,
LL_OPTIONSTR_FAX_SENDERNAME, LL_OPTIONSTR_FAX_SENDERCOMPANY ,
LL_OPTIONSTR_FAX_SENDERDEPT, LL_OPTIONSTR_FAX_SENDERBILLINGCODE

These options set a default value for the variables in the fax dialog (Project > Fax Variables). Any changes
made by the user in the Designer will override these values.

If the project is sent by fax, these expressions will be evaluated and directly used as parameters for the MS
Fax module.

As an alternative, these expressions are also available as variables (LL.Fax.xxxx), so that they can be placed
in the project in a special format to be used by other fax drivers. For details, please see the fax software
manual.

If these options are not set and the user has not entered any expressions in the fax dialog, the "MS FAX"
export will not be available.

LL_OPTIONSTR_LABEL_PRJDESCR, LL_OPTIONSTR_CARD_PRJDESCR, LL_-
OPTIONSTR_LIST_PRJDESCR, LL_OPTIONSTR_TOC_PRJDESCR, LL_OPTIONSTR_IDX_PRJDESCR,
LL_OPTIONSTR_GTC_PRJDESCR

Use this parameter to set the description of the corresponding project types. This description is displayed
in the file type combobox of the load and save dialogs. It is recommended to set the corresponding
_SINGULAR options as well.

LL_OPTIONSTR_LABEL_PRJDESCR_SINGULAR, LL_OPTIONSTR_CARD_PRJDESCR_SINGULAR,
LL_OPTIONSTR_LIST_PRJDESCR_SINGULAR, LL_OPTIONSTR_TOC_PRJDESCR_SINGULAR,
LL_OPTIONSTR_IDX_PRJDESCR_SINGULAR, LL_OPTIONSTR_GTC_PRJDESCR_SINGULAR

Use this parameter to set the description of the corresponding project types in the singular. This description
is displayed in the file type combobox of the load and save dialogs. These options are used in the repository-
mode and might be used otherwise in the future as well.

LL_OPTIONSTR_LABEL_PRJEXT

The file extension for a label project. Default "lIbl".

LL_OPTIONSTR_LABEL_PRNEXT

The file extension for the printer definition file of a label project. Default "lbp".

LL_OPTIONSTR_LABEL_PRVEXT

The file extension for the bitmap of a label project that will be shown in the File Open dialog. Default "lbv".

LL_OPTIONSTR_LICENSINGINFO

This option defines the licensing. You need to set your own personal license key here.

Important: Before redistributing your application, make sure to set your personal license key in all
instances of the "ListLabel' object using LL OPTIONSTR_LICENSINGINFO in order to avoid error
messages from the redistributed application. VCL, OCX and .NET component offer a corresponding
property "Licensinglnfo" for this purpose.

176

API Reference Function Reference

The necessary information can be found in the file "Personallicense.txt" in the root directory of your List
& Label installation. If more than one developer works on the project, any of the license information keys
will do.

Note: In the trial version, it is not necessary to set the licensing key or an empty string can be used.

LL_OPTIONSTR_LIST_PRJEXT

The file extension for a list project. Default "Ist".

LL_OPTIONSTR_LIST_PRNEXT

The file extension for the printer definition file of a list project. Default "Isp".
LL_OPTIONSTR_LIST_PRVEXT

The file extension for the bitmap of a list project that will be shown in the File Open dialog. Default "Isv".
LL_OPTIONSTR_LLFILEDESCR

Sets the description for List & Label preview files for the "save as" dialog in the preview.
LL_OPTIONSTR_LLXPATHLIST

This option defines the extension modules (LLX files) to be loaded. You must pass a list of file paths,
separated by semicolons, for the extension modules that you want to use in your application.

The following extension modules are loaded automatically by default, i.e. whenever opening a job or setting
this option:

CMLL31PW.LLX, CMLL3THT.LLX, CMLL31EX.LLX, CMLL310C.LLX
Additionally, for the Professional and Enterprise Edition:
CMLL31BC.LLX

These files are loaded from the DLL's path.

You can use Wildcards ("?", "*") to load multiple modules simultaneously.

To suppress loading of a default extension, pass its file name preceded by a"™", e.g. "™~ CMLL31PW.LLX".
To suppress all default extensions, pass "™ *" as first "filename".

When this parameter is used for L/GetOptionString() you will get a list of available extension modules (for
example "CMLL31PW.LLX;CMLL3THT.LLX").

If debug mode is switched on, List & Label will issue the rules and tell you why which module has been
loaded or unloaded.

LL_OPTIONSTR_LOGFILEPATH

This option can be used to specify the path and file name (by default "%APPDATA%\COMBIT.LOG") of
debug output activated via LLSetDebug() (parameter LL_ DEBUG CMBTLL LOGTOFILE) to a log file.

Please make sure that Debwin is not active on the system where you want to do the logging, because it
overwrites the path again. Usually you use this option for logging in the background.

LL_OPTIONSTR_MAILTO

Can be used to preset the address of the recipient when sending the preview file from the preview. Multiple
recipients can be separated by ";".

LL_OPTIONSTR_MAILTO_BCC

Can be used to preset the address of a BCC recipient when sending the preview file from the preview.
Multiple recipients can be separated by ";".

LL_OPTIONSTR_MAILTO_CC

Can be used to preset the address of a CC recipient when sending the preview file from the preview.
Multiple recipients can be separated by ";".

LL_OPTIONSTR_MAITO_SUBJECT

Can be used to preset the subject when sending the preview file from the preview.

177

API Reference Function Reference

LL_OPTIONSTR_NULLVALUE

Can be used to preset the representation of a NULL value at print time. Default value: empty(").

LL_OPTIONSTR_ORIGINALPROJECTFILENAME

Is needed to display files with relative path correctly in Designer preview. For more information, see the
"Direct Print and Export From the Designer" chapter.

LL_OPTIONSTR_PREVIEWFILENAME

Can be used to preset the name of the preview file. By default, the files are created in the project file's
directory or an alternative directory (see LIPreviewSetTempPath()). The default file name is <Project file
name>.LL. This option can be used to preset another name that replaces the <Project file name> part.

LL_OPTIONSTR_PRINTERALIASLIST

Allows you to define printer alias tables, i.e. tables that define which printers are to be used if any one of
the "default project" printers is not available.

To delete the table, pass NULL or an empty string (") to this option.

For each printer, you can provide a translation table with the old printer and one or more replacement
printers. You can do this by calling this function more than once, or by issuing multiple definitions for the
individual printers, separated by a line break "\n".

A table is defined by the line format:

"old printer=new printer 1[;new printer 2[;...]]"
so for example
"\server\eti=\\server\eti1;\\server_eti2"
"\server\a4fast=\\server\standard"

This list will cause List & Label to try the alias list "\server\eti1;\\server eti2" (in that order) if the printer
"\serven\eti" is not available, until a printer is available or the list is finished. The original paper format will be
used for the replacement printers. The parameters are not case-sensitive.

LL_OPTIONSTR_PROJECTPASSWORD

Encrypts the project files to protect them against unauthorized use. The password given here is used for
the encryption. The password itself is not stored in the project, so do not forget it!

You can store encrypted projects in unencrypted format in the Designer by pressing a shift key when you
save it. A password dialog will pop up and allow you to enter the original password. This is useful for
debugging or support cases.

The maximum password length is 5 characters in the range of 1 to 255 (ASCII code), resulting in 40-bit
encryption. The password is not (!) absolutely secure, as it is passed by an API. However, the barrier to
stealing project files is quite high.

LL_OPTIONSTR_REPORTPARAMDLGTITLE

This can be used to set the title of the report parameter dialog that will be displayed during export.

LL_OPTIONSTR_SAVEAS_PATH

The passed parameter will be used as default path for "save as" from the preview. The path may contain
path and file name.

LL_OPTIONSTR_SHORTDATEFORMAT

The string used to convert a date in a string in:
date$ (<Date>, "%x")

and for automatic type conversion (L/IExprEval(), Concat$())
Format and Default: See Windows API GetLocale/nfo(LOCALE USER DEFAULT, LOCALE SSHORTDATE,...)
LL_OPTIONSTR_THOUSAND

This represents the string that is used as thousands separator in the fstr$() function.

The default is the value of the user settings in the system, but this will be set to the respective locale value
on LL_OPTION _LCID.

178

API Reference Function Reference

LL_OPTIONSTR_TIMEZONE_CLIENT

This determines the time zone to be used for all conversions of date and time values for printing, exporting
and the Designer functions.

This is particularly important for distributed applications such as server/client applications or web
applications, where data sources, applications and clients may be located on different systems in different
time zones. The values for the possible time zones can be determined in the Windows registry under
HKEY LOCAL MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Time Zones and correspond to
the key name (see example below):

LISetOptionString(hdob, LL_ OPTIONSTR_TIMEZONE_CLIENT, L “W. Europe Standard Time");

Note: Values from the /nternet Assigned Numbers Authority (IANA) are not supported; only values/IDs
from Microsoft Windows time zones are supported.

LL_OPTIONSTR_TIMEZONE_DATABASE

This determines the time zone to be used for all conversions of date and time values from the database
(LIDefineVariable..., LIDefineField... etc.) to the client's time zone (see also
LL OPTIONSTR TIMEZONE CLIENT).

This is particularly important for distributed applications such as server/client applications or web
applications, where data sources, applications and clients may be located on different systems in different
time zones. The values for the possible time zones can be determined in the Windows registry under
HKEY LOCAL MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Time Zones and correspond to
the key name (see example below):

LISetOptionString(hJob, LL_ OPTIONSTR_TIMEZONE DATABASE, L'"W. Europe Standard Time");

Note: Values from the /nternet Assigned Numbers Authority (IANA) are not supported; only values/IDs
from Microsoft Windows time zones are supported.

LL_OPTIONSTR_VARALIAS

This option enables you to localize the field and variable names for the Designer. The provided alias will be
displayed within the Designer instead of the field/variable name. Only the original names will be stored
when saving the file. The project can thus be localized by supplying suitable alias names. The option string
needs to be set for each name that should be localized in the form "<alias>= <original name>", e.g.

LlSetOptionString (hJob, LL OPTIONSTR VARALIAS, "Vorname=FirstName");
LlDefineVariable (hJob, "FirstName", "John");

in order to pass a variable "FirstName" that should be displayed as "Vorname" in the Designer.

To delete all passed alias names, just use

LlSetOptionString (hJob, LL_ OPTIONSTR VARALIAS, "");

The .NET, OCX and VCL components offer a custom dictionary APl that makes using this option even easier.
See the components' help file for more information.

Example:
HLLJOB hJob;

L1SetDebug (TRUE) ;

hJob = L1JobOpen (0) ;

// all label projects will be called <somewhat>.label

v = LlSetOptionString (hJob, LL_OPTIONSTR_LABEL_PRJEXT, "label");
/]

Ll1JobClose (hJob) ;

See also:
LIGetOption, LIGetOptionString, LISetOptionString

LISetPrinterDefaultsDir

Syntax:
INT LlSetPrinterDefaultsDir (HLLJOB hJob, LPCTSTR pszDir);

179

API Reference Function Reference

Task:

Sets the path of the printer definition file, e.g. to use user-specific printer settings in a network environment.
Parameter:
hJob: List & Label job handle

pszDir: Path name of the directory

Return Value:
Error code

Example:

HLLJOB hJob;
hJob = L1lJobOpen (0) ;
LlSetPrinterDefaultsDir (hJob, "c:\\temp\\user");
if (LlPrintStart (hJob, LL PROJECT LIST, "c:\\test.lst", LL PRINT NORMAL) == 0)
{
<... etc ...>
L1PrintEnd (hJob) ;
}

else
MessageBox (NULL, "Error", "List & Label", MB OK);
LlJobClose (hJob) ;
See also:
LISetPrinterToDefault, LIPrintStart, LIPrintWithBoxStart, LIPrintCopyPrinterConfiguration,

LIPrintSetPrinterInPrinterFile

LISetPrinterInPrinterFile

Syntax:

INT LlSetPrinterInPrinterFile (HLLJOB hJob, UINT nObjType, LPCTSTR pszObjName, INT nPrinter,
LPCTSTR pszPrinter, PCDEVMODE pDM) ;

Task:
Replaces a printer in a printer configuration file by a new one or allows you to set special printer parameters

Parameter:
hJob: List & Label job handle

nObjType: LL PROJECT LABEL, LL PROJECT CARD or LL PROJECT LIST
pszObjName: Project name with file extension

nPrinter: Printer index (0: range with "Page() == 1" [will be created automatically if necessary], 1: default
range, -1: creates only the default range and deletes other ranges that may exist).

If the project contains multiple layout regions you can use indices starting from 99, where 99 will set the
printer for all regions, 100 for the first, 101 for the second and so on.

pszPrinter: Printer name

pDM: Address of new DEVMODE structure. If NULL, the default settings of the printer will be used.

Return Value:

Error value

Hints:
This function allows you to define the printer that will be used for printing. If the printer configuration file
does not exist, it will be created. By "oring" the project type with
LL PRJTYPE_OPTION_FORCEDEFAULTSETTINGS you can force the printer's default settings for the print
job.

As the printer configuration file will be used by L/Print/WithBox/Start(), the function must be called before
this function.

The DEVMODE structure is defined in the Windows API help file.

Due to the possibility to define layout regions in the Designer the practical benefit of this function has been
quite limited. We recommend to use the LL object model according to chapter "Using the DOM-API
(Professional/Enterprise Edition Only)" to access the layout regions and the associated printers.

The default printer in the preview can be set with LL_OPTION_FORCE_DEFAULT PRINTER_IN_PREVIEW.

180

API Reference Function Reference

These and related functions which affect the printer configuration file (the so-called "P-file") to change printer
settings cannot be used when Printerless (see LL_OPTION_PRINTERLESS) is enabled.

Example:

HLLJOB hJob;
hJob = L1lJobOpen (0) ;

LlSetPrinterInPrinterFile (hJob, LL PROJECT LABEL, "test.lbl", -1,
"Label Printer", NULL);
<... etc ...>

LlJobClose (hJob) ;
See also:

LISetPrinterToDefault, LIPrintStart, LIPrintWithBoxStart, LIPrintCopyPrinter-Configuration,
LIPrintSetPrinterDefaultsDir, GetPrinterFromPrinterFile

LISetPrinterToDefault

Syntax:
INT LlSetPrinterToDefault (HLLJOB hJob, UINT nObjType, LPCTSTR lpszObjName) ;

Task:
Deletes the printer definition file, so that List & Label uses the default printer set in the system the next time
the project is used.

Parameter:

hJob: List & Label job handle
nObjType: LL PROJECT LABEL, LL PROJECT CARD orLL PROJECT LIST
IpszObjName: The file name of the project with file extension

Return Value:

Error code
Hints:
The default printer in the preview can be set with LL_ OPTION_FORCE DEFAULT PRINTER_IN_PREVIEW.
Example:
HLLJOB hJob;
hJob = L1JobOpen (0) ;
LlSetPrinterToDefault (hJob, LL PROJECT LIST, "test.lst");
if (LlPrintStart (hJob, LL PROJECT LIST, "test.lst",
LL_PRINT NORMAL) == 0)
{
<... etc ...>
L1PrintEnd (hJob) ;
}
else
MessageBox (NULL, "Error", "List & Label", MB OK);
Ll1JobClose (hJob) ;
See also:

LISetPrinterDefaultsDir, LIPrintStart, LIPrintWithBoxStart

LIViewerProhibitAction

Syntax:

INT LlViewerProhibitAction (HLLJOB hJob, INT nMenulD) ;
Task:

Removes buttons from the preview.
Parameter:

hJob: List & Label job handle

nMenulD: 1D of the button you wish to remove. You can find the corresponding IDs in the "MenulD.txt" file
in your List & Label installation.

Return value:
Error code

181

API Reference Function Reference

Hints:
A 0 as menu ID clears the list of menu items to be suppressed.
If ribbon IDs are specified, the LL_ OPTION_RIBBON_FORCEENABLED option can also be used to force the
ribbon; otherwise, check whether these IDs would also affect the classic menu. Pass negative ribbon IDs
to enable them again.

See also:
LIPreviewDisplay, LIPreviewDisplayEx

LIXGetParameter

Syntax:
INT LlXGetParameter (HLLJOB hJob, INT nExtensionType, LPCTSTR pszExtensionName, LPCTSTR pszKey,
LPTSTR pszBuffer, UINT nBufSize);

Task:
Gets parameters from a specific extension module.

Parameter:

hJob: List & Label job handle
nExtensionType: Type of extension

Value Meaning
LL LIX EXTENSIONTYPE EXPORT Export module

LL LIX EXTENSIONTYPE BARCODE 2D barcode module

pszExtensionName: Name of the extension ("HTML", "RTF", "PDF417", ...)
pszKey: Name of the parameter

pszBuffer: Pointer to a buffer

nBufSize: Size of the buffer

Return value:
Error code

Hints:

The keys known by the extension modules are specific to them. Please refer to the documentation for the
respective module.

See chapter "Important Remarks on the Function Parameters of DLLs" concerning the buffer return value.

See also:
LIXSetParameter

LIXSetParameter

Syntax:

INT LlXSetParameter (HLLJOB hJob, INT nExtensionType, LPCTSTR pszExtensionName, LPCTSTR pszKey,
LPCTSTR pszValue);

Task:
Sets parameters in a specific extension module.

Parameter:
hJob: List & Label job handle

nExtensionType: Type of extension

Value Meaning
LL LIX EXTENSIONTYPE EXPORT Export module

LL LIX EXTENSIONTYPE BARCODE 2D barcode module

pszExtensionName: Name of the extension ("HTML", "RTF", "PDF417", ...)

pszKey: Name of the parameter

182

API Reference Callback Reference

pszValue: Value of the parameter

Return value:

Hints:

Error code

The keys known by the extension modules are specific to them. Please refer to the documentation for the
respective module.

Using this function, you can preset certain options of a module, for example the path of the output file.

See also:
LIXGetParameter
6.2 Callback Reference

LL_CMND_DRAW_USEROBJ

Task:

Tells the program to draw the object defined by the user.

Activation:

LlDefineVariableExt (hJob, <Name>, <Content>, LL DRAWING USEROBJ, <Parameter>);
LlDefineFieldExt (hJob, <Name>, <Content>, LL DRAWING USEROBJ, <Parameter>);

or

LlDefineVariableExt (hJob, <Name>, <Content>, LL DRAWING USEROBJ DLG,<Parameter>);

Parameters:

Pointer to an scL/DrawUserObj structure:
_nSize: Size of the structure, sizeof(scLIDrawUserObj)
_IpszName: Name of the variable assigned to the object

_IpszContents: Text contents of the variable which is assigned to the object. This value is only valid if the
variable has been defined by L/DefineVariableExt(), otherwise the hPara value is valid.

_IPara: |Para of the variable which is assigned to the object (LL DRAWING USEROBJ or
LL DRAWING USEROBJ DLG). Refers to the 4" parameter of the call L/IDefineVariableExtf).

_IpPtr: [pPtr of the variable which is assigned to the object. Refers to the 5™ parameter of the call
LIDefineVariableExt().

_hPara: Handle contents of the variable which is assigned to the object. This value is valid if the variable
has been defined by L/DefineVariableExtHandle(), otherwise the value /pszContents is valid.

_blsotropic: TRUE: the object should be drawn undistorted FALSE: the drawing should be fitted into the
rectangle

_IpszParameters: 1) for user-defined objects as table field: NULL
2) for LL DRAWING USEROBJ: Pointer to an empty string
3) for LL DRAWING USEROBJ DLG: Pointer to the string the programmer has returned at
LL CMND _EDIT_USEROBJ.

_hPaintDC: Device Context for the printout
_hRefDC: Device Context for references

_rcPaint: Rectangle in which the object should be drawn. The mapping mode is in the normal drawing
units, mm/10, inch/100 or inch/1000.

_nPaintMode: 1: on Designer-preview 0: on Printer/Multi-page-preview

Return Value (_IResult):

Hints:

0

In this callback no List & Label function may be called which will produce output (L/Print(), etc.))! Functions
like LIPrintGetCurrentPage(), LIPrintGetOption() or LIPrintEnable Object() are allowed.

See: Hints for the use of GDl-objects

183

API Reference Callback Reference

Example:

case LL_CMND_DRAW USEROBJ:
pSCD = (PSCLLUSEROBJ)pSC-> lParam;
FillRect (pSCD-> hPaintDC, pSCD->_rcPaint, GetStockObject (atoi(lpszContents)));
break;

LL_CMND_EDIT_USEROBJ

Task:

Requests the program to start an object-specific dialog through which the user can enter and change the
corresponding presentation parameters.

Activation:

LlDefineVariableExt (hJob, <Name>,<Contents>, LL_DRAWING USEROBJ DLG, <Parameter>);

Parameters:

Meaning of the parameter |[Param:

Pointer to an scL/EditUserObj structure:

_nSize: Size of the structure, sizeof(scLIEditUserObj)

_IpszName: Name of the variable which is assigned to the object

_IPara: [/Para of the variable assigned to the object (LL DRAWING USEROBJ or
LL DRAWING USEROBJ DLG). Is identical to the 4™ parameter of the call L/DefineVariableExt().

_IpPtr: [pPtr of the variable assigned to the object. This refers to the 5" parameter of the call
LIDefineVariableExty).

_hPara: Handle-contents of the variable assigned to the object. This value is only valid if the variable has
been defined by L/DefineVariableExtHandle(), otherwise the value /pszContents is valid.

_blsotropic: TRUE: the object should be drawn undistorted. FALSE: the drawing should be fitted optimally
into the rectangle

_hWhnd: Window-handle of the dialog. This should be taken as parent-handle of your dialogs.
_IpszParameters: Pointer to a buffer with the maximum size _nParaBufSize.

_nParaBufSize: Size of the buffer allocated by List & Label.

Return Value:

Hints:

0

This callback is sent if objects that are set to a variable of type LL DRAWING _USEROBJ DLG need to be
edited.

In this callback no List & Label function may be called which produces output (L/Print(), etc.) Functions like
LIPrintGetCurrentPage(), LIPrintGetOption() or LIPrintEnable Object() are allowed.

See: Hints on the use of GDI-objects.

The editing of the b/sotropic flag is optional, as this can be set by the user in the calling dialog. If you
change this flag, the change will be adopted by List & Label.

_IpszParameter points to string in which the values entered in the last dialog call are stored. You can copy
your parameter string into the buffer when it is smaller or the same size as the buffer. Otherwise, you can
change the pointer value to a pointer that points to your data. The problem of a longer parameter string is
that it cannot be released by List & Label if it is an allocated storage area. (Basic principle: you can pass up
to 1024 characters. The string cannot be extended, superfluous characters are cut off).

The characters permitted in the parameter string are all printable characters, i.e. characters with codes >
=32("").

Example:

case LL CMND EDIT USEROBJ:
pSCE = (PSCLLEDITUSEROBJ)pSC-> lParam;

lpszNewParas = MyDialog (pSCE-> hWnd, ...,);
if (strlen(lpszNewParams) < pSCE-> lpszParameters)

strcpy (pSCE-> lpszParameters, lpszNewParas);
else

184

API Reference Callback Reference

pSCE-> lpszParameters = lpszNewParas;
break;

LL_CMND_ENABLEMENU

Task:
Allows the host application to disable menu items
Activation:
Always activated
Parameters:
Meaning of the parameter IParam:
IParam: menu handle
Hints:
This callback is called when List & Label changes or updates the menu. The application can then enable or
disable menu items previously inserted by LL CMND_MODIFYMENU.
Example:

case LL CMND ENABLEMENU:
if (<whatever>)
EnableMenuItem (hMenu, IDM MYMENU, MF ENABLED|MF BYCOMMAND) ;
else
EnableMenuItem (hMenu, IDM MYMENU, MF DISABLED|MF GRAYED|MEF BYCOMMAND) ;
break;

LL_CMND_EVALUATE
Task:

Asks the program for the interpretation of the contents of the function External$() in an expression.
Activation:

While printing, when using an External$() function.
Parameters:

IParam is a pointer to an scL/Extfct structure:

_nSize: Size of the structure, sizeof(scLIExtFct)

_IpszContents: Parameter of the function External$()

_bEvaluate: TRUE if the contents are to be evaluated
FALSE if only a syntax-test is to be carried out.

_szNewValue: Array where the result is stored as a zero-terminated string. Default: empty

_bError: TRUE: error occurred. FALSE: no error occurred.
Default: FALSE

_szError: Array where a possible error definition can be stored, which can be requested later with
LIExprError(). This text is also displayed to the user in the Designer during the automatic syntax check in
case of an error.

Return Value (_IResult):
0 (always)
Hints:
If, for example, the expression in a formula is

Name + ", " + External$ (Name + ", " + forename)

then the parameter is the evaluated result of the formula 'Name + ", " + forename', in this case for example
'Smith, George'.

Important: the return fields must be zero-terminated and may not exceed the maximum length (16385
characters incl. termination for the return value, 128 characters incl. zero-termination for the error string).

185

API Reference Callback Reference

LL_CMND_GETVIEWERBUTTONSTATE

Task:
Using this callback, List & Label asks the application about button states of the preview's toolbar buttons.

Activation:
Always activated

Parameters:
HIWORD(IParam) = Tool button ID

LOWORD(IParam) = State defined by List & Label
Return Value (_IResult):

New State Meaning
0 no change
7 enabled

2 disabled
-7 hidden

Hints:

This function will be called by the preview by List & Label. You can find the corresponding IDs in the
"MenulD.txt" file in your List & Label installation.

Example:

case LL CMND_GETVIEWERBUTTONSTATE:
switch (HIWORD (1Param))
{
case 112:
// don't allow one-page print:
return (-1);
}

break;

LL_CMND_HELP

Task:
Enables the programmer to use an external help system instead of List & Label's own help system.

Activation:
LlSetOption (hJob, LL OPTION CALLBACKMASK, <other Flags> | LL CB HELP);
Parameters:
HIWORD(IParam):
Value Meaning
HELP _CONTEXT LOWORD(IParam) is then the context
number of the help topic
HELP INDEX the user wants to see the index of the help
file
HELP HELPONHELP the user queries the help summary

Return Value (_IResult):

0: Return to List & Label to display its help
1: List & Label should do nothing

Example:

case LL CMND HELP:
WinHelp (hWnd, "my.hlp", HIWORD (lPara), LOWORD (lPara));
pSC. 1lResult = 1;
break;

LL_CMND_MODIFYMENU

Task:

Allows the application to modify List & Label's menu. This callback is supported for reasons of compatability,
to extend the Designer the use of LIDesignerAddAction() is recommended.

186

API Reference Callback Reference

Activation:
Always activated

Parameters:
Meaning of the parameter IParam:

IParam: menu handle

Return Value:
Ignored, always 0

Hints:
This function is called when List & Label created its menu. The application can add or delete menu items.

You can find the corresponding IDs in the "MenulD.txt" file in your List & Label installation. User-defined
menus should use IDs above 10100.

This callback is only included for compatibility reasons, to expand the Designer preferably use
LIDesignerAddAction().

Example:

case LL CMND_MODIFYMENU:
DeleteMenu(hMenu, IDM HELP CONTENTS, MF BYCOMMAND) ;

DeleteMenu (_hMenu, IDM_HELP_INDEX, MF BYCOMMAND) ; DeleteMenu (_hMenu,
IDM HELP HELPONHELP, MF BYCOMMAND) ;
break;

LL_CMND_OBJECT

Task:

Enables the programmer to draw something before or after List & Label into or near the object rectangle or
to hide the object during printing.

This function allows many modifications to objects and is the so-called "do-it-all" for object representations.

Activation:
L1SetOption (hJob, LLioPTION7CALLBACKMASK, <other Flags> | LL7CB70BJECT);

Parameters:
IParam points to an scLIObject structure:

_nSize: Size of the structure, sizeof(scLIObject)

_nType: Type of object:

Object Meaning

LL OBJ TEXT Text

LL OBJ RECT Rectangle

LL OBJ LINE Line object

LL OBJ BARCODE Barcode object
LL OBJ DRAWING Drawing object
LL OBJ TABLE Table

LL OBJ RTF RTF object

LL OBJ TEMPLATE Template bitmap
LL OBJ ELLIPSE Ellipse/Circle

_IpszName: Name of the object. Either the name given in the Designer or a text like "TABLE (<Rectangle
measures>)" - the text which is printed in the status line of the Designer for this object if it is selected.

_bPreDraw: TRUE for a call before List & Label draws the object.
FALSE for a call after List & Label has drawn the object.

_hPaintDC: Device Context for the print
_hRefDC: Device Context for references

_rcPaint: Rectangle in which the object is drawn. The mapping mode is in the normal drawing units, mm/10,
inch/100 or inch/1000.

187

API Reference Callback Reference

Return Value (_IResult):

Value of _bPreDraw _IResult

TRUE 0: okay
1: object is not to be drawn (in this case
hidden)

FALSE always 0

Hints:

In this callback no List & Label function may be called which will produce output (L/Print(), etc.)! Functions
like LIPrintGetCurrentPage() or LIPrintGetOption() are allowed. See: Hints on the use of GDI objects.

This function is called twice per object, once with _bPreDraw = TRUE, then with _bPreDraw = FALSE.

_rcPaint may vary between these calls if the object size becomes smaller (text, table object) or the
appearance condition does not match!

_bPreDraw = TRUE:
Use: you can draw an individual background or hide the object.

If you change rcPaint, these modifications will have consequences for the size of the object, as the object
is drawn by List & Label in the given rectangle.

_bPreDraw = FALSE:
Use: you can draw an individual background and/or shade, as only then is the true size of the object known.

The rectangle rcPaint is the correct object rectangle. If you change rcPaint then this affects the linked
objects, as the data from _rcPaint is used as object rectangle, which might influence the coordinates of
spatially linked objects!

Example:
case LL CMND OBJECT:

pSCO = (PSCLLOBJECT)pSC->_ lParam;

if (pSCO-> nType == LL_OBJ RECT &&
pSCO-> bPreDraw == FALSE)

{
FillRect (pSCO-> hPaintDC, pSCF-> rcPaint,

GetStockObject (LTGRAY BRUSH) ;
}

break;

LL_CMND_PAGE

Task:
Allows the programmer to place additional output on the page. This is useful for printing labels, for example,
as in this way you can "paint" additional information onto a page (page number, printout time, "demo" text,
individual watermarks etc...)

Activation:
L1lSetOption (hJob, LL OPTION CALLBACKMASK, <other flags> | LL CB PAGE);

Parameters:
IParam points to an scLIPage structure:

_nSize: Size of structure, sizeof(scLIPage)

_bDesignerPreview: TRUE if the call takes place from the Designer preview FALSE if the call takes place
during the WYSIWYG-preview or print.

_bPreDraw: TRUE for a call, before List & Label draws the page.
FALSE for a call after List & Label has finished the page.

_bDesignerPreview: TRUE if the call takes place from the Designer preview FALSE if the call takes place
during the WYSIWYG-preview or print.

_hPaintDC: Device Context for the print
_hRefDC: Device Context for references

Return Value:
0

188

API Reference Callback Reference

Hints:
In this callback no List & Label function may be called which will produce output as a result (L/Print(), etc.)!
Functions like L/IPrintGetCurrentPage(), LIPrintGetOption() or LIPrintEnable Object() are allowed.

See: Hints on the use of GDl-objects.
This function is called twice per page, once with _bPreDraw = TRUE, then with bPreDraw = FALSE.
The page size can be determined by the function GetWindowExt(). Don't forget: use the hRefDC!

If you change the window origin of the hRefDC for bPreDraw = TRUE with SetWindowOrg(), this affects
the whole page. In this way you can define a different margin for even/odd pages. This relocation only
affects the WYSIWYG viewer and printout, not the Designer preview.

Example:

case LL CMND PAGE:
pSCP = (PSCLLPAGE)pSC->_ lParam;
if (pSCP-> bPreDraw && (LlPrintGetCurrentPage (hJob) % 2) == 1)
SetWindowOrg (pSCP->_hPaintDC, -100, 0);
break;

LL_CMND_PROJECT

Task:
Enables the programmer to place additional drawings in a label or file card project (an individual label, for
example).
This callback only occurs with label and file card projects. With list objects, it would be identical to
LL CMND _PAGE.
Activation:
LlSetOption (hJob, LL OPTION_CALLBACKMASK,
<other Flags> | LL CB PROJECT);
Parameters:

IParam points to an scLIProject structure:
_nSize: Size of the structure, sizeof(scLIProject)

_bPreDraw: TRUE for a call before List & Label draws the page.
FALSE for a call after List & Label has drawn the page.

_bDesignerPreview: TRUE if the call takes place from the Designer preview.
FALSE if the call takes place during the WYSIWYG preview or print.

_hPaintDC: Device Context for the print

_hRefDC: Device Context for references

_rcPaint: Rectangle in which the object should be drawn. The mapping mode is in the normal drawing
units, mm/10, inch/100 or inch/1000.

Return Value:

0
Hints:

In this callback no List & Label function may be called which will produce output (L/Print(), etc.)! Functions

like LIPrintGetCurrentPage(), LIPrintGetOption() or LIPrintEnable Object() are allowed.

See: Hints on the use of GDl-objects.

This function is called twice per page, once with _bPreDraw = TRUE, then with _bPreDraw = FALSE.
Example:

case LL _CMND PROJECT:

pSCP = (PSCLLPROJECT)pSC-> lParam;

if (pSCP->_bPreDraw)
{
FillRect (pSCL-> hPaintDC, pSCL-> rcPaint,
GetStockObject (LTGRAY_ BRUSH) ;
}

break;

189

API Reference Callback Reference

LL_CMND_SAVEFILENAME
Task:

Notification that the user has saved the project in the Designer. The file name is passed.

Parameters:
/Param points to the zero-terminated file name.

Return Value (_IResult):

0
Example:
case LL CMND_SAVEFILENAME:
pszLastFilename = (LPCTSTR) lParam;

LL_CMND_SELECTMENU
Task:

Notification that a menu has been selected.

Activation:
Always activated.

Parameters:

IParam: Menu ID of the menu item (negative ID if called from a toolbar button). You can find the
corresponding IDs in the "MenulD.txt" file in your List & Label installation.

Return Value (_IResult):

TRUE, if List & Label shall not try to execute the command associated with the menu ID (usually if the menu
item has been inserted by the application)
FALSE otherwise

Example:
case LL CMND SELECTMENU:
if (lParam == IDM MYMENU)
{
// execute custom code
return (TRUE);
}

break;

LL_CMND_TABLEFIELD
Task:

Enables the programmer to modify the coloring of individual table fields.
Activation:
L1SetOption (hJob, LL OPTION_ TABLE COLORING, LL7COLORING7PROGRAM)

In this way, the control of the coloring in tables is left to your program (the corresponding settings in the
table characteristic dialog of the Designer won't appear).

or
LlSetOption (hJob, LL OPTION TABLE COLORING,LL COLORING DONTCARE)

With this command, List & Label lets your program draw the background first of all, then it draws the
background again (if allowed) with the field pattern defined in the Designer. This allows a kind of cooperation
between the programmer and the user.

Parameters:
IParam points to an scllTableField structure:

_nSize: Size of structure, sizeof(scllTableField)
_nType: Type of field:

Value Meaning
LL TABLE FIELD HEADER Field is in the header line
LL TABLE FIELD BODY Field is in the data line

190

API Reference Callback Reference

LL TABLE FIELD GROUP Field is in group header line

LL TABLE - Field is in group footer line
FIELD GROUPFOOTER
LL TABLE FIELD FILL Field is the filling area when the table has a

fixed size and there is some free space
below the last data line
LL TABLE FIELD FOOTER Field is in the footer line

_hPaintDC: Device Context for the print and in the following callback definitions
_hRefDC: Device Context for the references

_rcPaint: Rectangle in which the field is to be drawn. The mapping mode is in the normal drawing units,
mm/10, inch/100 or inch/1000.

_nLineDef: Number of line definition to be drawn.
_nIndex: Field index, O-based (the first column has the index 0, the second 1, etc.)
_rcSpacing: Cell distances

_pszContents: This parameter provides the (evaluated) content of the cell currently being rendered, e.g.
"Smith" for a column that contains a field Person.Lastname. You can use this parameter to handle certain
values specifically.

Return Value:
0

Hints:
In this callback no List & Label functions may be called which will produce output (L/Print(), etc.)!

If you select a GDI object in these DCs or make other changes, e.g. change the mapping mode, you should
reverse the changes before ending the routine. Hint: the API functions SaveDC(), RestoreDC() can help
considerably for complex changes (the used functions are Windows API function).

Example:
case LL CMND TABLEFIELD:
pSCF = (PSCLLTABLEFIELD)pSC-> lParam;
if (pSCF-> nIndex == 1)
{
FillRect (pSCF-> hPaintDC, pSCF->_ rcPaint,
GetStockObject (LTGRAY BRUSH) ;

}
pSC._1Result = 0;
break;

LL_CMND_TABLELINE

Task:

Enables the programmer to modify the coloring of individual table lines, e.g. to produce your own zebra
mode (every other line).

Activation:
LlSetOption (hJob, LI, OPTION TABLE COLORING, LI COLORING PROGRAM)

In this way the control of the coloring in tables is left to your program (the corresponding setting possibilities
won't appear).

LlSetOption (hJob, LL OPTION TABLE COLORING,LL COLORING DONTCARE)

With this command, List & Label lets your program draw the background first of all, then it draws the
background with the field background defined in the Designer, when required again. This allows a kind of
cooperation between the programmer and the user.

Make sure to set the LL_ CB_TABLELINE flag via LL_OPTION_CALLBACKMASK in order to receive this
notification.

Parameters:
IParam points to an sclLITableLine structure:

_nSize: Size of the structure, sizeof(scLITableLine)

_nType: Type of field:

191

API Reference Callback Reference

Value Meaning

LL TABLE LINE HEADER Header line

LL TABLE LINE BODY Data line

LL TABLE LINE GROUP Group header

LL TABLE - Group footer

LINE GROUPFOOTER

LL TABLE LINE FILL Filling area when the table has a fixed size
and there is some free space below the
last data line

LL TABLE LINE FOOTER Footer line

_hPaintDC: Device Context for the printout
_hRefDC: Device Context for references

_rcPaint: Rectangle in which the line is to be drawn. The mapping mode is in the normal drawing units,
mm/10, inch/100 or inch/1000.

_nPageline: Line index. Marks the 0-based line number on this page.

_nLine: Line index. Marks the 0-based line number of the line in the whole print.
_nLineDef: Number of line definition to be drawn.

_bZebra: TRUE, when the user chooses zebra mode in the Designer.
_rcSpacing: Cell distances

Return Value:
0

Hints:
In this callback no List & Label function may be called which will produce output (L/Print(), etc.)!

See: Hints on the use of GDIl-objects

Example:

case LL CMND TABLELINE:

pSCL = (PSCLLTABLELINE)pSC-> 1Param;

if ((pSCL-> nPageline % 2) == 1)

{

FillRect (pSCL->_ hPaintDC, pSCL->_ rcPaint,

GetStockObject (LTGRAY BRUSH) ;

}

pscCallback-> 1Reply = 0;

break;

LL_CMND_VARHELPTEXT

Task:

Assigns a context help string for a variable or field. This string is displayed if the variable/field is selected in
the expression wizard.

Activation:
Always activated

Parameters:
IParam: points to a string containing the variable or fieldname

Return Value:

_IReply must point to the description string. Caution: this must remain valid after return of this function, so
do not use an automatic stack variable.

Example:
case LL CMND VARHELPTEXT:
sVariableDescr = (LPCSTR) pscCallback-> lParam;
// Check routines for variable
strcpy (szHelpText, "Variable x for task y");
pscCallback-> 1Reply = (LPARAM)szHelpText;
break;

192

API Reference

Callback Reference

LL_INFO_METER

Task:
Notification that a (possibly) lengthy operation is taking place.
Activation:
Always activated
Parameters:
IParam points to a structure of type scLIMeterInfo:
_nSize: Size of the structure
_hWnd: Handle of the List & Label main window
_nTotal: Total count of objects
_nCurrent: Index of object currently being processed
_nJob: Job ID, tells you what LL is doing:
Value Meaning
LL METERJOB SAVE saving the objects
LL METERJOB LOAD loading the objects
LL METERJOB - internal consistency check
CONSISTENCYCHECK
Hints:

By using this callback, the host application can implement a wait dialog box. We suggest using this callback
if the object count exceeds 200 objects to reduce unnecessary screen flickering. To get a percentage value,

use MulDiv(100, nCurrent, _nTotal).

Example:

// functions used here for a meter dialog must be replaced by own functions

case LL_INFO METER:
{
scLlMeterInfo* pMI = (scLlMeterInfo*)lParam;
static HLLJOB hMeterJob = 0;
// is actual version?
if (pMI-> nSize == sizeof (scL1MeterInfo))
{
// do I have to do something?
if (pMI-> nTotal > 0)
{
// get parent window handle for Dialog

HWND hWndParent = pMI-> hWnd ? pMI-> hWnd : hwndMyFrame;

// start:
if (pMI-> nCurrent == 0)
{

// open meter bar with 0%!

hMeterJob = WaitDlgStart (hWndParent, "wait a moment",

}

else
{
// end:
if (pMI-> nCurrent == pMI-> nTotal)
{
// end meter bar!
WaitDlgEnd (hMeterJob) ;
}
else

// somewhere in between 0 and 100

{

// set meter value to MulDiv (100, nCurrent, nTotal)
WaitDlgSetText (hMeterJob, "still working...",
MulDiv (100, pMI-> nCurrent, pMI-> nTotal));

193

API Reference Callback Reference

LL_INFO_PRINTJOBSUPERVISION

Task:

Can be used to monitor a print job after it is passed to the spooler.

Parameter:

Hints:

/Param contains an address of a struct of type scL/PrintJob/nfo:

_nSize: Size of the structure

_hLlJob: Job handle of the job that started the print

_szDevice: Printer name

_dwdJobID: Job ID (not the job ID of the printer but a global one created by List & Label)
_dwsState: Combination of state flags (JOB_STATUS -constants in WINSPOOL.H)

Please make sure to set LL_ OPTION _NOPRINTJOBSUPERVISION to FALSE to enable this callback.
The detail depth depends on the print spooler.

The dwState flags are defined as follows:

#define JOB_STATUS PAUSED 0x00000001
#define JOB_STATUS ERROR 0x00000002
#define JOB_STATUS DELETING 0x00000004
#define JOB_STATUS SPOOLING 0x00000008
#define JOB_STATUS PRINTING 0x00000070
#define JOB_STATUS OFFLINE 0x00000020
#define JOB_STATUS PAPEROUT 0x00000040
#define JOB_STATUS PRINTED 0x00000080
#define JOB_STATUS _DELETED 0x00000700

#define JOB_STATUS BLOCKED DEVQ 0x00000200
#define JOB_STATUS _USER_INTERVENTION 0x00000400
#define JOB_STATUS RESTART 0x00000800

LL_NTFY_COMBINATIONPRINTSTEP

Task:

List & Label uses the callback LL_NTFY COMBINATIONPRINTSTEP to inform you about the current project
for a combination print.

Parameter:

IParam points to a scL/CombinationPrintStep structure:
_nSize: Size of the structure.
_nindex: Index of the project within the combination print.

_pszJobData: If the syntax "JOB=" was used for /pszObjName in LIPrintWithBoxStart, its content can be
accessed here. Otherwise pszJobData is empty.

_pszProjectID: Name of the project to be output.

Return Value:

Hint:

Return O to trigger no action, 1 to reset the page counter, 2 to reset the page counter or the total number
of pages, LL_COMBINATIONPRINTSTEP_SKIP (0x100) to skip the current project or a negative error code
in the event of an error.

The specified projects for the table of contents (TOC), index (IDX) or reverse side (GTC) are not explicitly
called up in this callback. The evaluation sequence and the time of execution of these project types is
managed internally. See also L/PrintWithBoxStart.

194

API Reference Callback Reference

LL_NTFY_DESIGNERPRINTJOB

Task:
Via callback LL_NTFY DESIGNERPRINTJOB List & Label informs you about the task that has to be performed.
This callback will always be called up in the context of the designer thread (this is the thread, from which
LIDefineLayout() was called).

Parameters:
The callback parameter is a pointer to a scL/DesignerPrintJob structure:

_nUserParam: value vyou set LL OPTION DESIGNERPREVIEWPARAMEIER to or assigned
LL _OPTION_DESIGNEREXPORTPARAMETER to.

_pszProjectName: Name of the project to print. This parameter is only valid with the command "START",
otherwise NULL.

_pszOriginalProjectFileName : Name of the original project. This parameter is only valid with the command
"START", otherwise NULL. It is necessary, so that relative paths and the function ProjectPath$() are correctly
evaluated by List & Label.

_nPages: Maximum number of pages to be output. This will have to be passed after print start via
LlPrintSetOption (hJob, LL PRNOPT LASTPAGE, nPages)

to the print job. If nPages has the value "0", this means, that the print should not be limited.

_nFunction: Operations to be performed. There are four different operations: Start, Break, Finalize and
Status query.

As there are two groups of operation (EXPORT and PREVIEW), this gives 8 constants:

LL DESIGNERPRINTCALLBACK PREVIEW START

LL DESIGNERPRINTCALLBACK PREVIEW ABORT

LL DESIGNERPRINTCALLBACK PREVIEW FINALIZE

LL DESIGNERPRINTCALLBACK PREVIEW QUEST JOBSTATE
LL DESIGNERPRINTCALLBACK EXPORT START

LL DESIGNERPRINTCALLBACK EXPORT ABORT

LL DESIGNERPRINTCALLBACK EXPORT FINALIZE

LL DESIGNERPRINTCALLBACK EXPORT _QUEST JOBSTATE

_hWnd: Window handle. The meaning of this structure member is described below.
_hEvent: Event handle, needed for communication and synchronization of your application with List & Label.

_pszExportFormat: Preselected export format (required in Ribbon mode only), see chapter "Direct Print and
Export From the Designer".

_bWithoutDialog: Print/export without dialog (required in Ribbon mode only), see chapter "Direct Print and
Export From the Designer".

Return Value:

Return LL DESIGNERPRINTTHREAD STATE RUNNING, if your thread is working otherwise
LL DESIGNERPRINTTHREAD STATE STOPPED.

Hints:
See chapter "Direct Print and Export From the Designer".

LL_NTFY_EXPRERROR

Task:
Notifies the application of an expression error found by the parser.

Activation:
Always active

Parameters:
IParam: Pointer to an error text

Return Value:
0

195

API Reference Callback Reference

Hints:

As LIExprError() does not reliably return an incorrect formula after a call to L/PrintStart(), this event can be
used to collect errors and present them to the user when L/PrintStart() fails because of formula errors.

LL_NTFY_EXPRERROR_EX

Task:
Notifies the application of an expression error found by the parser.

Activation:
Always active

Parameters:
The callback parameter is a pointer to a scLINtfyExprErrorEx structure:

_nSize: Size of the structure.

_pszExpr: Erroneous expression.

_pszError: Error text.

_pvHierarchy: Pointer to a VARIANT array, that contains the hierarchy of the error location.

Return Value:
0

Hints:

Since LIExprError() only leads to limited success when loading a project (also for printing) (since the internal
formula parser may have already parsed a completely different formula when calling the function and thus
may no longer have an error "active"), you can collect error messages and their error location via this callback
and then report them to the user after L/PrintStart().

LL_NTFY_FAILSFILTER

Task:

Notification that the data record which has just been passed to List & Label was not printed, as it did not
comply with the filter requirement.

Activation:
Always active
Parameters:
Meaning of the parameter IParam: none
Return Value:
0
Hints:
In this callback, no List & Label function may be called which will produce output (L/Print(), etc.)!
Serves to set a global variable; but can be made superfluous with L/PrintDidMatchFilter().

Example:

case LL NTFY FAILSFILTER:
bFails = TRUE;
break;

LL_NTFY_VIEWERBTNCLICKED

Task:
Notification that a button has been pressed in the preview window.

Activation:
Always activated

Parameters:
IParam: Tool button ID

196

API Reference Callback Reference

Return Value (_IResult):

Hints:

_IResult Meaning

7 ignore button (action usually done by host
application)

0 execute default button function

This function is called by List & Label's real data preview. You can find the corresponding IDs in the
"MenulD.txt" file in your List & Label installation.

Example:

case LL NTFY VIEWERBTNCLICKED:
switch (lParam)
{
case 112:

// beep on one-page print
// and don't execute it!
MessageBeep (-1) ;
return(l);

break;

LL_NTFY_VIEWERDRILLDOWN

Task:

Notification that a drilldown action should be processed.

Activation:

L1SetOption (hJob, LL _OPTION_DRILLDOWNPARAMETER,
(LPARAM) &oMyDrillDownParameters) ;

Parameters:

IParam points to a structure scL/DrillDownJob:
_nSize: Size of the structure

_nFunction: Sets the task:

Task Meaning
LL DRILLDOWN_START Start
LL DRILLDOWN_ FINALIZE Finalize

_nUserParameter: \/alue passed with LL_OPTION _DRILLDOWNPARAMETER

_pszTablelD: Points to a string containing the name of the child table

_pszRelationID: Points to a string containing the name of the relation between child and parent table
_pszSubreportTablelD: Points to a string containing the name of the child table.

_pszKeyField: Points to a string containing the name of the key field of the parent table. If the relation
contains different key fields, the result is tab delimited. Please note the description of the function
LIDbAddTableRelationEx().

_pszSubreportKeyField: Points to a string containing the name of the key field of the child table. If the
relation contains different key fields, the result is tab delimited. Please note the description of the function
LIDbAddTableRelationEx().

_pszKeyValue: Points to a string containing the contents of the key field of the parent table. If the relation
contains different key fields, the result is tab delimited. Please note the description of the function
LIDbAddTableRelationEx().

_pszProjectFileName: Name of the project file to be processed.
_pszPreviewFileName: Name of the preview file that has to be created.

_pszTooltipText: Points to a string containing the tool tip text when hovering over a table entry, that can
trigger a drilldown report.

197

API Reference Callback Reference

_pszTabText: Points to a string containing the tab text, if the user wants a drilldown report shown in a
separate tab.

_hWnd: Window handle to show own dialogs (window handle of the preview control).

_nID: Unique drilldown job ID, should not be mistaken with the List & Label print job. To make a unique
assignement, in the FINALIZE task this ID contains the value that has been assigned in the START task.

_hAttachinfo: This parameter is needed for L/AssociatePreviewControl() to attach the viewer. Additionally
the flags LL _ASSOCIATEPREVIEWCONTROLFLAG DELETE ON CLOSE and LL ASSOCIATEPREVIEW-
CONTROLFLAG HANDLE IS ATTACHINFO must be used. Further information can be found in chapter
"Printing Relational Data".

Return Value:

Return a value that is unique for the entire runtime of the application.

Hints:

This callback will always be called in the context of the preview thread, regardless if initiated from designer
or preview print.

Example:
See chapter "Printing Relational Data".

LL_QUERY_DESIGNERACTIONSTATE

Task:

Via this callback List & Label checks the state of the user defined Actions (see LIDesignerAddAction()). You
can then, depending on requirements, enable or disable the actions.

Activate:
Always active

Parameter:
HIWORD(IParam): the (user defined) ID for the action

LOWORD(IParam): Status setting as set by Designer

Return value (_IResult):

Value Meaning

7 Action is active

2 Action is not active
Example:

case LL QUERY DESIGNERACTIONSTATE:
~1Result = (bEnabled? 1 : 2);
break;

LL_QUERY_EXPR2HOSTEXPRESSION

Task:

Via this callback List & Label asks the host to translate a filter expression (as configured in the Designer) to
data source native syntax. The callback is triggered multiple times for each part of the filter expression as
soon as the application calls to L/IPrintDbGetCurrentiableFilter(). This callback can be used e.g. to translate
a List & Label filter to an SQL query.

Activate:
Always active, triggered by a call to LIPrintDbGetCurrentTableFilter().

Parameter:

/Param points to a structure scLLEXPR2HOSTEXPR. For readability, the prefix " p" means that it's a pointer
to the argument, but in the description, we call it the argument.

_nSize: Size of the structure

_pszTablelD: Table this expression belongs to.

198

API Reference Callback Reference

_nType: Type of element that needs to be translated. For most operations, simply set _pvRes to the
resulting statement for the operation. If — for example — nType is
LLEXPR2HOSTEXPR ARG _BINARY OPERATOR_ADD, the typical return value would be _pvRes =
+ _T("+") + _pv2.

_pvl

Value

LLEXPR2HOSTEXPR_ARG_BOOLEA
N

LLEXPR2HOSTEXPR_ARG_TEXT

LLEXPR2HOSTEXPR_ARG_NUMBE
R

LLEXPR2HOSTEXPR_ARG_DATE

LLEXPR2HOSTEXPR_ARG_UNARY _
OPERATOR_SIGN

LLEXPR2HOSTEXPR_ARG_UNARY_
OPERATOR_NEGATION

LLEXPR2HOSTEXPR_ARG_BINARY _
OPERATOR_ADD

LLEXPR2HOSTEXPR_ARG_BINARY
OPERATOR_SUBTRACT

LLEXPR2HOSTEXPR_ARG_BINARY _
OPERATOR_MULTIPLY

LLEXPR2HOSTEXPR_ARG_BINARY_
OPERATOR_DIVIDE

LLEXPR2HOSTEXPR_ARG_BINARY _
OPERATOR_MODULO

LLEXPR2HOSTEXPR_ARG_LOGICAL
_OPERATOR XOR

LLEXPR2HOSTEXPR_ARG_LOGICAL
_OPERATOR OR

LLEXPR2HOSTEXPR_ARG_LOGICAL
_OPERATOR_AND

LLEXPR2HOSTEXPR_ARG_RELATIO
N_EQUAL

LLEXPR2HOSTEXPR_ARG_RELATIO
N_NOTEQUAL

LLEXPR2HOSTEXPR ARG _RELATIO
N LARGERTHAN

LLEXPR2HOSTEXPR_ARG_RELATIO
N_LARGEREQUAL

LLEXPR2HOSTEXPR ARG _RELATIO
N SMALLERTHAN

LLEXPR2HOSTEXPR_ARG_RELATIO
N_SMALLEREQUAL

Meaning
a boolean value

a text value. If you need to
parametrize your query to avoid
SQL injection attacks, set the
_pvName member to a parameter
name (on entry, pvName contains
a unique, consecutive integer index
that you can use for the name if
needed) and set pvRes to the
resulting text. The parameter
values will be returned in the
corresponding variant passed to
LIPrintDbGetCurrentTablefilter().

a numeric value. pvArgl->vt is
either VT |4 for an integer, oder
VT _R8 for a floating-point value.

a date value
the sign operator

the negation operator
the "+" operator

the "-" operator

the "*" operator

the "/" operator

the "%" operator

the logical xor operator
the logical or operator
the logical and operator
the "=" operator

the "<>" operator

the ">" operator

the ">="operator

the "<" operator

the "< =" operator

API Reference Managing Preview Files

LLEXPR2HOSTEXPR_ARG _FUNCTIO 'a designer function. _pvName

N contains the function name,
_pvl... pv4 contain the function's
arguments.

LLEXPR2HOSTEXPR_ARG_FIELD a database field. Depending on the
target syntax, it might be necessary
to escape or frame an identifier
name.

_pvRes: a VARIANT to receive the resulting expression. Set the pointer to NULL or the VARIANT type to
VT_EMPTY, if no suitable translation is available. The whole (or in case of an AND operator, the current
branch of the) expression is not translated.

_nArgs: Number of arguments. This member is important for functions with optional arguments.

_pvName: Name of function to translate. This member can also be set to handle query parameters (see
above).

_pvT: Depending on _nType (see above), the first argument of a function or the left-hand side of an operator.

_pv2: Depending on nType (see above), the second argument of a function or the right-hand side of an
operator.

_pv3: The third argument of a function.
_pv4: The fourth argument of a function.

Return value:
Value Meaning

0 Translation was not handled or cannot be handled. The
whole (or in case of an AND operator, the current branch of
the) expression is not translated.

1 Translation was handled exactly.

2 Translation was handled inexactly; the result will contain
more records than appropriate. In this case, List & Label will
run its own filtering in addition in order to filter the exceeding
records.

6.3 Managing Preview Files

6.3.1 Overview

The preview print contained in List & Label writes the preview data into a file. This file can be archived for later use,
sent to another user who can look at it or print it without any loss of quality.

All data is stored in one file. Using the optional compression that you can switch on using
L1SetOption(hJob, LL_OPTION_COMPRESSSTORAGE, 1)
the file size can be reduced by up to 2/3. Compression slows down the print process but is convenient, for example,

if you wish to present data on the Internet for download or preview using our OCX.

The file has the extension ".LL". We do not provide any information about its inner structure, and we recommend
that you do no rely on any details you may find out! This is intentional, as we have our own API to access the data
contained in it, so that there is no advantage for you in seeing inside the file. We wish to be free to change the
format whenever necessary, without having conflicts with existing software.

6.3.2 The Preview API

You do not need to worry about the details of the preview files - the API functions L/Stgsysxxx() do that for you.

All of these functions are exported by the C?LS31.DLL. This DLL, which you will usually distribute with external
viewers, is as small as possible. If you wish to use this DLL via an import library, you need to link to the C?LS31.LIB
file. In some programming languages, it is sufficient to include the respective declaration file.

200

API Reference Managing Preview Files

LIStgsysAppend

Syntax:
INT LlStgsysAppend (HLLSTG hStg, HLLSTG hStgToAppend) ;

Task:
Append another preview job to the current storage file.

Parameter:
hStg: The handle returned by L/StgsysStorageOpen)

hStgToAppend: Handle of the preview file to append.

Return value:
<0: Error code
= 0: okay
Hints:
This function needs both (!) preview files to be in the LL STG_STORAGE format.

If the file to append contains a backside page it will only be used if the original file doesn't already contain
such a page itself.

Of course, the current storage format may not be opened with bReadOnly = TRUE!

Example:

HLLSTGhStgOrg;
HLLSTGhStgAppend;

hStgOrg = L1StgsysStorageOpen ("c:\\test\\labell.1l1l", FALSE, FALSE);
hStgAppend = LlStgsysStorageOpen ("c:\\test\\label2.11", FALSE, TRUE);
L1StgsysAppend (hStgOrg, hStgAppend) ;

L1StgsysClose (hStgsysOrg) ;

L1StgsysClose (hStgsysAppend) ;

LIStgsysConvert

Syntax:
INT LlStgsysConvert (HLLSTG hStg, LPCTSTR pszDstFilename, LPCTSTR pszFormat) ;

Task:
Converts a preview file to another format.

Parameter:
hStg: The handle returned by L/StgsysStorageOpen()

pszDstFilename: Name of the target file. It is also possible to use the placeholder %d (e.g. "page %d"). This
is important e.g. for converting JPEGs, because without the placeholder only one page will result.

pszFormat: Target format. Valid values are:

Value Meaning

PRN Printer

PRV or LL Preview

PDF Adobe PDF Format
XHTML * XHTML/CSS Format
MHTML * Multi-Mime HTML Format
XLS * Microsoft Excel Format
DOCX * Microsoft Word Format
XPS Microsoft XPS Format

TIFF or PICTURE_MULTITIFF
PNG or PICTURE_PNG

JPEG bzw. PICTURE_JPEG
EMF

TTY

TXT

TIFF Picture

PNG Picture

JPEG Picture

Metafile Picture (EMF)
Pinwriter (TTY)

Text (CSV) Format

* only if embedded in the preview file, see LL_ OPTIONSTR_EMBEDDED EXPORTS

201

API Reference Managing Preview Files

This parameter allows you to declare a semicolon-separated list with further export options. You will find
the accepted values in the chapter "The Export Modules". Please note that not all options can be supported
with this API. An example is the parameters "PDF;PDF.EncryptionFile=1".

Additional to the mentioned parameters above the following parameters can be used:

Value Meaning

PagelndexRange Analog to the print options dialog a
range for pages can be set.

JobIndexRange Analog to the print options dialog a
range for the job can be set.

IssuelndexRange Analog to the print options dialog a
range for the issues can be set.

An example of this is the use of " PDF;Export.PagelndexRange=2-3".
With this, only pages 2 and 3 are converted to PDF.

The export to PRN creates a file that is specially prepared for the given printer (parameter "PRN.Device=").
This file can be output on the printer by copying it directly. Therefore, the printer name (device name) must
be explicitly defined.

Return value:
<0: Errorcode

= 0: okay
Hints:
Example:
HLLSTGhStgOrg;
hStgOrg = LlStgsysStorageOpen ("c:\\test\\labell.ll", "",
FALSE, TRUE);
L1lStgsysStorageConvert (hStgOrg, "c:\\test\\label2.pdf", "PDF");
LlStgsysStorageClose (hStgOrg) ;
See also:
LIStgsysStorageOpen, LIStgsysStorageConvert
LIStgsysDeleteFiles
Syntax:
void LlStgsysDeleteFiles (HLLSTG hStg);
Task:
Erases the preview file(s).
Parameter:

hStg: The handle returned by L/StgsysStorageOpen)

Return value:
<0: Error code
= 0: okay
Hints:
This function erases the preview file(s). The only call that makes sense after this call is
LIStgsysStorage Close().
See also:
LIStgsysStorageOpen, LIStgsysStorageClose

LIStgsysDestroyMetafile

Syntax:
INT LlStgsysDestroyMetafile (HANDLE hMF) ;

202

API Reference

Managing Preview Files

Task:
Releases the metafile handle.

Parameter:
hMF: (enhanced) metafile handle

Return value:

<0: Error code
= 0: okay

Example:
See LIStgsysGetPageMetafile

See also:
LIStgsysGetPageMetafile

LIStgsysDrawPage

Syntax:

void LlStgsysDrawPage (HLLSTG hStg, HDC hDC, HDC hPrnDC, BOOL bAskPrinter, PCRECT pRC, INT

nPageIndex, BOOL bFit, LPVOID pReserved);

Task:

Paints a preview page to a screen or printer device.

Parameter:

hStg: The handle returned by L/StgsysStorageOpen)

hDC: DC for printing (usually a printer or screen device). Can be NULL (see below).

hPrnDC: Reference DC which can be used to get the unprintable area etc. For a screen DC, this is the
(default) printer DC, for a printer DC it is the same as hDC above. Can be NULL (See below).

bAskPrinter: If hPrnDC is NULL, this flag defines whether the user is asked about the printer for the
reference DC. If it is TRUE, he will be asked, if it is FALSE, the default printer will be used.

PRC: Points to a RECT structure containing the device coordinates for printing. If this is NULL, the printer's

values will be used. Must not be NULL when printing to a non-printer DC!

nPagelndex: Page index (1..L/StgsysGetPage Count())

bFit: Defines whether the print should fit into the area (TRUE) or whether the original size should be kept
(FALSE), although the latter might result in clipped output due to differences in paper size, unprintable area

etc..
pReserved: NULL

Return value:
Error code

Hints:

If hDC is NULL, it will be set to hPrnDC after the reference DC has been created.

See Also:
LIStgsysPrint, LIStgsysStoragePrint

LIStgsysGetAPIVersion

Syntax:

int L1StgsysGetAPIVersion (HLLSTG hStg);

Task:

Returns the version of the Stgsys API.

Parameter:

hStg: The handle returned by L/StgsysStorageOpen)

Return value:

The version number of the Stgsys APl in List & Label C?LL31.DLL and C?LS31.DLL

203

API Reference Managing Preview Files

Hints:
The current version number is 31.

This function should be used to test the APl version. Newer APls might have a larger set of functions
available, older ones less.

See also:
LIStgsysGetFileVersion

LIStgsysGetFilename

Syntax:
int L1StgsysGetFilename (HLLSTG hStg, INT nJob, INT nFile, LPTSTR pszBuffer, UINT nBufSize);

Task:

Can be used to get the 'real' name(s) of the preview file(s). If a path has been provided to
LIStgsysStorageOpen() this path will also be included.

Parameter:
hStg: The handle returned by L/StgsysStorageOpen)

nJob: Job Index: 1: first Job,... (1..L/StgsysGetJobCount())

nFile: Page number

Value Meaning

-1 Management file

0 Printer configuration file

>0 Page Metafile for this page (1.. LIStgsysGet-
PageCount())

IpszBuffer: |nitialized buffer for the file name with file extension
nBufSize: Size of the buffer
Return value:
Error code
Hints:
The nFile Parameter distinguishes the type of file for which the name is to be returned.

In the case of LL_STG_STORAGE, its name is returned regardless of the nFile parameter, as this is the one
and only file that contains all information.

Example:

CString sFilename, sOutput;
L1StgsysGetFilename (hStg, 1, -1, sFilename.GetBuffer (MAX PATH),

_MAX_PATH) ;

sFilename.ReleaseBuffer();

sOutput = CString(T("View of file ")) + sFilename;
See also:

LIStgsysGetJobCount

LIStgsysGetFileVersion

Syntax:
int L1StgsysGetFileVersion (HLLSTG hStg);

Task:
Returns the version of the preview file.

Parameter:
hStg: The handle returned by L/StgsysStorageOpen)

Return value:
The version number of the preview file and the type:

Value Meaning
Bits 0..7 The current version number is 31

204

API Reference Managing Preview Files

Hints:
This call is also very important for finding out about properties of the storage file and for dealing with
possible differences.

See also:
LIStgsysGetAPIVersion

LIStgsysGetJobCount

Syntax:
INT LlStgsysGetJobCount (HLLSTG hStg);

Task:
Returns the number of jobs stored in the preview.

Parameter:
hStg: The handle returned by L/StgsysStorageOpen)

Return value:
>0: Number of jobs
<0: Error code
Example:
see LIStgsysSetJob

See also:
LIStgsysStorageOpen

LIStgsysGetJobOptionStringEx

Syntax:
INT L1StgsysGetJobOptionStringEx (HLLSTG hStg, LPCTSTR pszKey, LPTSTR pszBuffer, UINT
nBufSize);

Task:

Returns project parameter values.

Parameter:
hStg: The handle returned by L/StgsysStorageOpen()
pszKey: Option name
pszBuffer: Address of buffer for the value
nBufSize: Size of buffer (incl. string termination)

Return value:
<0: Error code
= 0: okay

Hints:
The available option names depend on the parameters which the creating application has made available
via LIPrintSetProjectParameter() or LISetDefaultProjectParameter() as PUBLIC. Note that you need to prefix
these parameters with "ProjectParameter" in order to query the values. See also chapter "Project
Parameters'".

See also:
LIStgsysSetJobOptionStringEx

LIStgsysGetlobOptionValue

Syntax:
INT L1StgsysGetJobOptionValue (HLLSTG hStg, INT nOption);

Task:
Returns certain numerical parameters for the current job.

205

API Reference Managing Preview Files

Parameter:
hStg: The handle returned by L/StgsysStorageOpen)

nOption: Chooses the meaning of the return value

Return value:

>=0: Value
<0: Error code

Hints:

These values are invaluable if you wish to create your own preview and print management, especially if the
destination printers are different from the original.

To get the correct value, set the job with L/StgsysSetJob() before calling this API function.
nOption can have the following values:

LS_OPTION_BOXTYPE

Returns the style of the meter box used at the time of the preview print (and which should also be used
during printing). This is one of the constants LL_BOXTYPE xxx (see LIPrintWithBoxStart()), or -1 if no box had
been used (LLPrintStart()).

LS_OPTION_UNITS

Returns the units chosen for the project, see LL_PRNOPT _UNIT.
LS_OPTION_PRINTERCOUNT

Number of printers used

See also:
LIStgsysSetJob

LIStgsysGetLastError

Syntax:
INT LlStgsysGetLastError (HLLSTG hStg);

Task:
Returns the error code of the last call to a L/Stgsys()-API function.

Parameter:
hStg: The handle returned by L/StgsysStorageOpen)

Return value:

<0: Error code
= 0: no error

Hints:
Can be used for functions that return NULL as return value in case of an error (i.e. LIStgsysGetPageMetafile()

).
See also:
LIStgsysGetPageMetafile

LIStgsysGetPageCount

Syntax:
INT LlStgsysGetPageCount (HLLSTG hStg);

Task:
Returns the number of pages in the current job.

Parameter:
hStg: The handle returned by L/StgsysStorageOpen)

206

API Reference Managing Preview Files

Return value:

>0: Number of pages
<0: Error code

Hints:

The page numbers (the numbers that can be written on the paper!) can be queried by calling
LIStgsysGetPageOptionValue() with the parameter LS OPTION _PAGENUMBER.

Example:
See LIStgsysSetJob

See also:
LIStgsysSetJob, LIStgsysJobGetOptionValue

LIStgsysGetPageMetafile

Syntax:
HANDLE LlStgsysGetPageMetafile (HLLSTG hStg, INT nPagelndex);

Task:
Returns an enhanced metafile handle that can be used to display or print page data.

Parameter:
hStg: The handle returned by L/StgsysStorageOpen)

nPagelndex: Page index (1..L/StgsysGetPage Count())

Return value:
NULL: error; else: handle of (enhanced) metafile

Hints:
The handle needs to be released using L/StgsysDestroyMetafile().

Example:
Excerpt from the code of L/StgsysDrawPage():

HANDLE hMF';
BOOL blébit;

hMF = Ll1StgsysGetPageMetafile (hStg, nPagelndex);
if (hMF == NULL)
{
hMF = L1StgsysGetPageMetafilel6 (hStg, nPagelIndex);
}
if (hMF == NULL)
ret = LL ERR STG CANNOTGETMETAFILE;
else
{
POINT ptPixels;
POINT ptPixelsOffset;
POINT ptPixelsPhysical;
POINT ptPixelsPerInch;

ptPixels.x = L1StgsysGetPageOptionValue (hStg, nPagelndex,
LS_OPTION PRN PIXELS X);

ptPixels.y = L1StgsysGetPageOptionValue (hStg, nPageIndex,
LS_OPTION PRN PIXELS Y);

ptPixelsOffset.x = L1StgsysGetPageOptionValue (hStg, nPagelndex,
LS OPTION PRN PIXELSOFFSET X);

ptPixelsOffset.y = L1StgsysGetPageOptionValue (hStg, nPagelndex,
LS _OPTION PRN PIXELSOFFSET Y);

ptPixelsPhysical.x = L1StgsysGetPageOptionValue (hStg, nPagelndex,
LS _OPTION PRN PIXELSPHYSICAL X);

ptPixelsPhysical.y = L1StgsysGetPageOptionValue (hStg, nPagelndex,
LS OPTION PRN PIXELSPHYSICAL Y);

ptPixelsPerInch.x = L1StgsysGetPageOptionValue (hStg, nPagelndex,
LS _OPTION PRN PIXELSPERINCH X);

ptPixelsPerInch.y = L1lStgsysGetPageOptionValue (hStg, nPagelndex,
LS _OPTION PRN PIXELSPERINCH Y);

<Paint Metafile>
L1StgsysDestroyMetafile (hMF) ;

207

API Reference Managing Preview Files

See also:
LIStgsysDestroyMetafile

LIStgsysGetPageOptionString

Syntax:

INT L1StgsysGetPageOptionString (HLLSTG hStg, INT nPagelIndex, INT nOption, LPTSTR pszBuffer,
UINT nBufSize);

Task:
Returns character strings that are stored in the preview file.

Parameter:
hStg: The handle returned by L/StgsysStorageOpen)

nPagelndex: Page index (1..L/StgsysGetPageCount())

nOption: Chooses the meaning of the return value

pszBuffer: Address of the buffer for the string

nBufSize: Length of the buffer (including the terminating O-character)

Return value:
Error code
Hints:
You can use the following values for nOption:

LS_OPTION_PROJECTNAME

Returns the name of the project file that has been used to create this page
LS_OPTION_JOBNAME

Returns the name of the job (see L/PrintiVithBoxStart())
LS_OPTION_USER

Returns the user-specific string (see LIStgsysSetPage OptionString())
LS_OPTION_CREATION

Creation date/time

LS_OPTION_CREATIONAPP

Application that created this file
LS_OPTION_CREATIONDLL

DLL that created this file
LS_OPTION_CREATIONUSER

User and computer name of the person that created this file

LS_OPTION_PRINTERALIASLIST

See also LL_OPTIONSTR_PRINTERALIASLIST: this represents the printer alias list valid at the time of the
creation of the preview file. This is one string, lines separated by a line break "\n".

LS_OPTION_USED_PRTDEVICE

Returns the device of the original printer (for example "HP LaserJet 4L")

See also:
LIStgsysGetPageOptionValue, LIStgsysSetPageOptionString

LIStgsysGetPageOptionValue

Syntax:
INT L1StgsysGetPageOptionValue (HLLSTG hStg, INT nPageIndex, INT nOption);

208

API Reference Managing Preview Files

Task:
Returns page-dependent information.

Parameter:
hStg: The handle returned by L/StgsysStorageOpen()

nPagelndex: Page index (1..L/StgsysGetPageCount())
nOption: Chooses the meaning of the return value
LS_OPTION_PAGENUMBER

Returns the page number of the selected page.
LS_OPTION_COPIES

Returns the number of copies that the page should be printed with.
LS_OPTION_PRN_ORIENTATION

Returns the page orientation (DMORIENT_PORTRAIT or DMORIENT _LANDSCAPE)
LS_OPTION_PHYSPAGE

Returns whether the project should be printed using the physical paper size (1) or only the printable area
(0).

LS_OPTION_PRN_PIXELSOFFSET_X

Returns the horizontal offset of the printable area in relation to the paper edge (of the original printer).

LS_OPTION_PRN_PIXELSOFFSET_Y

Returns the vertical offset of the printable area in relation to the paper edge (of the original printer).
LS_OPTION_PRN_PIXELS_X

Returns the horizontal size of the printable area (of the original printer).
LS_OPTION_PRN_PIXELS_Y

Returns the vertical size of the printable area (of the original printer).
LS_OPTION_PRN_PIXELSPHYSICAL_X

Returns the horizontal size of the paper (of the original printer).

LS_OPTION_PRN_PIXELSPHYSICAL_Y

Returns the vertical size of the paper (of the original printer).

LS_OPTION_PRN_PIXELSPERINCH_X

Returns the horizontal printer resolution (DPI).

LS_OPTION_PRN_PIXELSPERINCH_Y

Returns the vertical printer resolution (DPI).

LS_OPTION_PRN_INDEX

Returns the index of the printer used for the current page (0 means first page-printer, 1 for the printer for
the other pages).

LS_OPTION_ISSUEINDEX

Returns the issue index (1...) of the page.

Return value:

>=0: Value
<0: Error code

Hints:
"Printer" or "original printer" means the printer selected when the preview file was created.

These values are invaluable if you wish to create your own preview and print management, especially if the
destination printers are different from the original.

209

API Reference Managing Preview Files

To get the correct value, set the job with L/StgsysSetJob() before calling this API function.

See also:
LIStgsysGetPageOptionString

LIStgsysGetPagePrinter

Syntax:

INT LlStgsysGetPagePrinter (HLLSTG hStg, INT nPagelIndex, LPTSTR pszDeviceName, UINT
nDeviceNameSize, PHGLOBAL phDevmode) ;

Task:

Returns the printer and the settings that would be used for this page.
Parameter:

hStg: The handle returned by L/StgsysStorageOpen)

nPagelndex: Page index (1..L/StgsysGetPageCount())
pszDeviceName: Pointer to a buffer for the device name
nDeviceNameSize: Size of the buffer

phDevmode: Pointer to a global handle where the DEVMODE structure will be stored. If NULL, the
DEVMODE structure is not queried. If a pointer to a handle is passed, it must be a valid global handle or
NULL.

Return value:
Error code (LL_ ERR_BUFFERTOOSMALL if the device name's buffer is too small)

See also:
LIGetPrinterFromPrinterFile, LISetPrinterInPrinterFile

Example:

HGLOBAL dev (NULL) ;

TCHAR* pszPrinter = new TCHAR[1024];

int iRet = L1StgsysGetPagePrinter (m_hStgOrg, 1, pszPrinter, 1096, &dev);
LPVOID pDevmode = GlobalLock (dev) ;

DEVMODE aDEVMODE = * ((DEVMODE*) pDevmode) ;

// tidy-up

GlobalUnlock (dev) ;
GlobalFree (dev) ;

LIStgsysPrint

Syntax:

HLLSTG LlStgsysStoragePrint (HLLSTG hStg, LPCTSTR pszPrinterNamel, LPCTSTR pszPrinterName2, INT
nStartPageIndex, INT nEndPagelIndex, INT nCopies, UINT nFlags, LPCTSTR pszMessage, HWND
hWndParent) ;

Task:

Prints pages from an open preview file job

Parameter:
hStg: The handle returned by L/StgsysStorageOpen)

pszPrinterName1: Name of the printer to be used for the first page (can be NULL, see below)
pszPrinterName2: Name of the printer to be used for the following pages (can be NULL, see below)
nStartPagelndex: Index of the first page to be printed

nEndPagelndex: Index of the last page to be printed

nCopies: Number of copies

nFlags: A combination of the following flags:

Flag Meaning
LS PRINTFLAG FIT Fits the print to the printable area of the
printer

210

API Reference Managing Preview Files

LS PRINTFLAG - Print copies for each page, not the job
STACKEDCOPIES (111222333 instead of 123123123)

LS PRINTFLAG - Try to make hardware copies if possible
TRYPRINTERCOPIES

LS PRINTFLAG METER Show a meter dialog

LS PRINTFLAG - Show a meter dialog which has a
ABORTABLEMETER "Cancel" button

LS PRINTFLAG SHOWDIALOG | Shows a printer select dialog

LS PRINTFLAG FAX Required for output on fax printer

LS PRINTFLAG IGNORE PROJ | Paper bin will be ignored

ECT TRAY

LS PRINTFLAG IGNORE PROJ ' Duplex will be ignored

ECT DUPLEX

LS PRINTFLAG IGNORE PROJ | Page collation will be ignored
ECT COLLATION

LS PRINTFLAG IGNORE PROJ | Printer specific settings will be ignored
ECT EXTRADATA

pszMessage: Will be shown in the title of the optional meter dialog and is also used as document name for
the print job. If NULL, the entry from the preview file (parameter of L/PrintWithBoxStart()) is used.

hWndParent: \Nindow handle to be used as parent for the meter dialog
Return Value:
Error code

Hints:

Use this API routine if you want an easy way to print a page range from the current storage job. If a printer
name is NULL, List & Label tries to get the printer and its settings from the values stored in the preview file
(i.e. the printer settings selected during creation). If no printer with the specified device name is present,
the default printer is selected.

You need to set the job (L/StgsysSetJob()) before you call this function.

See Also:
LIStgsysPrint, LIStgsysSetJob

LIStgsysSetJob

Syntax:
INT LlStgsysSetJob (HLLSTG hStg, INT nJob);

Task:
Sets the job index for the following API calls

Parameter:
hStg: The handle returned by L/StgsysStorageOpen)

nJob: Job index (1..LIStgsysGetJobCount())

Return value:
Error code

Hints:

The following API calls that return job-dependent data will use this job index to return the corresponding
values.

Example:

// calculates the total amount of pages
int nPages = 0;
INT nJob;
for (ndJob = 1; nJob<LlStgsysGetJobCount (hStg); ++ nJob)
{
LlstgsysSetJob (hStg, nJob);
nPages + = L1lStgsysGetPageCount (hStg);

211

API Reference Managing Preview Files

See also:
LIStgsysGetJobCount

LIStgsysSetJobOptionStringEx

Syntax:
INT L1StgsysSetJobOptionStringEx (HLLSTG hStg, LPCTSTR pszKey, LPCTSTR pszValue);

Task:
Sets project parameter values.

Parameter:
hStg: The handle returned by L/StgsysStorageOpen()

pszKey: Option name
pszValue: Value

Return value:
<0: Error code
= 0: okay
Hints:
Can be used to write values into the preview file (unless it was opened as READ-ONLY). Do not use reserved
option names starting with "LL.".
See also:
LIStgsysGetJobOptionStringEx

LIStgsysSetPageOptionString

Syntax:
INT LlStgsysSetPageOptionString (HLLSTG hStg, INT nPageIndex, INT nOption, LPCTSTR pszBuffer);

Task:
Set string values.

Parameter:
hStg: The handle returned by L/StgsysStorageOpen)

nPagelndex: Page index (1..L/StgsysGetPageCount())

nOption: Chooses the meaning of the contents value

Value Meaning
LS OPTION JOBNAME New job name
LS OPTION _USER A user-specific value

The user can insert a user-specific
string, for example a user name, print
date etc. into the storage file.

pszBuffer: Address of a 0-terminated string

Return value:
Error code

Hints:
Of course, the storage file may not be opened with bReadOnly = TRUE!

Example:

L1StgsysSetJob (hStg, 1);
LlstgsysSetPageOption (hStg, 1, LS_OPTION USER, "Letters A-B");

See also:
LIStgsysGetPageOptionValue

212

API Reference Managing Preview Files

LIStgsysSetUlLanguage

Syntax:
INT LlStgsysSetUILanguage (HLLSTG hStg, INT nLanguage);

Tasks:
Sets the Ul language.

Parameter:
hStg: The handle returned by L/StgsysStorageOpen()

nlLanguage: LCID of the language.

Return value:
0: okay, <0O: Error code

Example:

L1StgsysSetJob (hStg, 1) ;
L1lStgsysSetUILanguage (hStg,1033) ;

LIStgsysStorageClose

Syntax:
void LlStgsysStorageClose (HLLSTG hStg);

Task:
Closes the access handle to the preview.

Parameter:
hStg: The handle returned by L/StgsysStorageOpen)

See also:
LIStgsysStorageOpen

LIStgsysStorageConvert

Syntax:

INT LlStgsysStorageConvert (LPCTSTR pszStgFilename, LPCTSTR pszDstFilename, LPCTSTR pszFormat);
Task:

Converts a preview file to another format.
Parameter:

pszStgFilename: Name of the preview file
pszDstFilename: Name of the target file
pszFormat: Target format. For valid values and additional options, see LIStgsysConvert().

Return value:
<0: Errorcode

= 0: okay
Hints:
Example:
LlStgsysStorageConvert ("c:\\test\\label2.11", "c:\\test\\label2.pdf", "PDF");
See also:
LIStgsysStorageOpen, LIStgsysConvert
LIStgsysStorageOpen
Syntax:

HLLSTG LlStgsysStorageOpen (LPCTSTR lpszFilename, LPCTSTR pszTempPath, BOOL bReadOnly, BOOL
bOneJobTranslation) ;

213

API Reference Managing Preview Files

Task:
Opens a preview file

Parameter:

IpszFilename: The name of the project or preview (List & Label does not take account of the extension, as
it will always be set to .LL)

pszTempPath: A temporary path (can be NULL or empty)
bReadOnly: TRUE: The file will be opened in read-only mode. FALSE: The file can be written to

bJobTranslation: TRUE: The Stgsys API takes account of multiple jobs and shows you all data as one job.
FALSE: You can (and must!) manage multiple jobs yourself

Return value:
Job handle for all other LIStgsys functions, 0 means error

Hints:

If you use a path for temporary data, this will be used as directory for the preview files, otherwise the path
of the project file name will be used. This convention is compatible with the calls to L/Print(<Project file>)
and L/PreviewSetTempPath(<Temporary Path>).

Note that the functions L/StgsysAppend() and LIStgsysSetPage OptionString() need the file to be opened with
bReadOnly = FALSE!

bJobTranslation = TRUE is convenient if you don't want to take account of multiple jobs. If you want to
show your users whether the file contains multiple jobs, you need to set this to FALSE and manage a list of
jobs with their properties.

See also:
LIStgsysClose

LIStgsysStoragePrint

Syntax:

INT LlStgsysStoragePrint (LPCTSTR lpszFilename, LPCTSTR pszTempPath, LPCTSTR pszPrinterNamel,
LPCTSTR pszPrinterName2, INT nStartPageIndex, INT nEndPageIndex, INT nCopies, UINT nFlags,
LPCTSTR pszMessage, HWND hWndParent);

Task:
Prints pages from an open preview file job

Parameter:

IpszFilename: The name of the project or preview (List & Label does not take account of the extension, as
it will always be set to .LL)

pszTempPath: A temporary path (can be NULL or empty)

pszPrinterName1: Name of the printer to be used for the first page (can be NULL, see below)
pszPrinterName2: Name of the printer to be used for the following pages (can be NULL, see below)
nStartPagelndex: Index of the first page to be printed

nEndPagelndex: Index of the last page to be printed

nCopies: Number of copies

nFlags: A combination of the following flags:

Flag Meaning

LS PRINTFLAG _FIT Fits the print to the printable area of the
printer

LS PRINTFLAG - Prints copies for each page, not the job

STACKEDCOPIES (111222333 instead of 123123123)

LS PRINTFLAG - Tries to make copies by printer feature,

TRYPRINTERCOPIES if possible

LS PRINTFLAG _METER Shows a meter dialog

LS PRINTFLAG - Shows a meter dialog which has a

ABORTABLEMETER "Cancel" button

214

API Reference Managing Preview Files

LS PRINTFLAG SHOWDIALOG | Shows a printer select dialog
LS PRINTFLAG FAX Required for output on fax printer

pszMessage: Will be shown in the title of the optional meter dialog and is also used as document name for
the print job. If NULL, the entry from the preview file (parameter of L/PrintStart()) is used.

hWndParent: \Nindow handle to be used as parent for the meter dialog
Return value:
Error code

Hints:
Use this API routine if you want an easy way to print a page range from a preview file. If a printer name is
NULL, List & Label tries to get the printer and its settings from the values stored in the preview file (i.e. the
printer settings selected during creation). If no printer with the given device name is present, the default
printer is selected.

See also:

LIStgsysPrint

LsMailConfigurationDialog

Syntax:
INT LsMailConfigurationDialog (HWND hWndParent, LPCTSTR pszSubkey, UINT nFlags, INT nLanguage) ;

Task:
Opens a configuration dialog for the mail parameters. Can be used if the CMMX31.DLL is used for sending
export results by mail.

The settings will be saved in the registry under "HKEY CURRENT USER\software\combit\-
cmbtmx\<pszSubkey>\<User| Computer>".

Parameter:
hWndParent: Parent window handle for the dialog.

pszSubkey: Subkey that is used for saving the values in the registry. You should use your application's
executable name (excluding the path and file extension) here. The values will then be set automatically.

Alternatively, a complete registry key like "HKEY _CURRENT USER\..." or "HKEY_LOCAL_MACHINE\..." can
be passed.

nFlags: Any combination of LS MAILCONFIG_USER and LS_MAILCONFIG_GLOBAL (at least one must be
specified). Optionally LS_MAILCONFIG_PROVIDER can be added (OR-ed) for storing the transport provider.
The data of the transport provider are user specific unless the flag LS MAILCONFIG_USER was not
specified.

Value Meaning

LS MAILCONFIG_USER User-specific data

LS MAILCONFIG_GLOBAL Computer-specific data

LS MAILCONFIG_PROVIDE Provider selection (SMAPI, SMTP, ...)
R

All data (also the computer specific data) is saved user-specifically — the flags just define a logical separation
for the dialog (server settings and user information).

nlLanguage: Language for the dialog

Value Meaning
CMBTLANG _DEFAULT System language
CMBTLANG _GERMAN German
CMBTLANG ENGLISH English

Other values can be found in the declaration files.

Return value:
Error code

215

API Reference

Managing Preview Files

See also:

LsMailGetOptionString

Syntax:

INT LsMailGetOptionString (HLSMAILJOB hJob, LPCTSTR pszKey, LPTSTR pszBuffer, UINT nBufSize);

Task:
Queries the email settings from List & Label.

Parameter:
hJob: List & Label email-API job handle

pszKey: Option name. For valid options, see LsMailSetOptionString().

IpszBuffer: Pointer to a buffer for the value.
nBufSize: Size of the buffer.

Return value:
Error code

See also:
LsMailSetOptionString

LsMaillJobClose

Syntax:

INT LsMailJobClose (HLSMAILJOB hdJob) ;
Task:

Close the DLL job.
Parameter:

hJob: List & Label email APl job handle
Hints:

This function must be called after using the email functions or when terminating your application. (paired

with LsMailJobOpen().

Example:
HLSMAILJOB hMailJob;

hMailJob = LsMailJobOpen (CMBTLANG DEFAULT) ;

LsMailJobClose (hMailJob)
See also:
LsMailJobOpen

LsMailJobOpen

Syntax:
INT LsMailJobOpen (INT nLanguage) ;

Task:
Opens a mail job.
Parameter:
nlLanguage: language for user interaction

Value Meaning

CMBTLANG DEFAULT System default language
CMBTLANG _GERMAN German

CMBTLANG ENGLISH English

Further constants in the declaration files.

216

API Reference Managing Preview Files

Return value:
A handle, which is necessary for most functions.

A valid value is greater than 0.

Example:
HLSMAILJOB hMailJob;

hMailJob = LsMailJobOpen (0) ;

See also:
LsMailJobClose

LsMailSendFile

Syntax:
INT LsMailSendFile (HLSMAILJOB hJob, HWND hWndParent) ;

Task:
Sends an email with the current settings.

Parameter:
hJob: List & Label email API job handle
hWndParent: Parent window handle for the email dialog. If the window handle is "0", no dialog will be
shown and the email will be sent without any user activities.
Return value:
Error code

Example:

HLSMAILJOB hMailJob;

hMailJob = LsMailJobOpen (0) ;

LsMailSetOptionString (hMailJob, "Export.Mail.To", "test@domainname.de");

LsMailSetOptionString (hMailJob, "Export.Mail.Subject", "Test!");

LsMailSetOptionString (hMailJob, "Export.Mail.AttachmentList",
"c:\\test.txt");

LsMailSendFile (hMailJdob, 0);

LsMailJobClose (hMailJob)

See also:
LsMailSetOptionString

LsMailSetOptionString

Syntax:
INT LsMailSetOptionString (HLSMAILJOBR hJob, LPCTSTR pszKey, LPCTSTR pszValue);

Task:
Sets various mail settings in List & Label.

Parameter:
hJob: List & Label email APl job handle

pszKey: The following values are possible:

Value Meaning

Export.Mail.To Recipient address. Multiple recipients can be
separated by semicolons.

Export. Mail.CC This address will receive a carbon copy. Multiple
recipients can be separated by semicolons.

Export. Mail. BCC This address will receive a blind carbon copy.
Multiple recipients can be separated by
semicolons.

Export.Mail.Subject Email subject.

Export.Mail.Body Mail body text.

217

API Reference

Managing Preview Files

Value

Export.Mail. Body:text/plain

Export.Mail.Body:text/htm/

Export.Mail. AttachmentList

pszValue: new value

Return value:

Error code

Example:
HLSMATILJOB hMailJdob;
hMailJob = LsMailJobOpen (0);

LsMailSetOptionString (hMailJob,
"test@domainname.com") ;

LéﬁailJobClose(hMailJob)
See also:
LsMailGetOptionString

Meaning
Mail body text in plain text format. Identical to
Export.Mail.Body.

Mail body text in HTML format (SMTP and XMAPI
only). Optional, otherwise the mail will be sent with
the text defined in Export.Mail.Body or
Export.Mail.Body.text/plain.

Tabulator-separated attachment list

"Export.Mail.To",

LsSetDebug
Syntax:

void LsSetDebug (BOOL bOn) ;
Task:

Switches the LS-API debug mode.
Parameter:

bOn: If TRUE, the debug mode will be switched on.

Return value:

See also:

218

The Export Modules Programming Interface

7. The Export Modules

In addition to the output to preview file, List & Label offers some other output formats. These output formats can
be created by certain special export modules used by List & Label, with the file extension .lIx (List & Label extension).
This List & Label extension interface is designed to allow multiple output formats in a single extension file. The
actual export to one of the new formats can be performed analogously to normal printing.

The output formats which are shown to the end user or which are directly used can be specified by your program.

The export modules provided by List & Label by default support the following formats:

Export target Value

Printer PRN

Preview PRV

Adobe PDF Format PDF

Microsoft Excel Format XLS

Microsoft Word Format DOCX
Microsoft PowerPoint Format PPTX

Rich Text Format (RTF) RTF

Microsoft XPS Format XPS
XHTML/CSS Format XHTML
Multi-Mime HTML Format MHTML

JSON Format JSON

Text (CSV) Format TXT

Text (Layout) Format TXT_LAYOUT
XML Format XML

Bitmap Picture PICTURE_BMP
JPEG Picture PICTURE_JPEG
Metafile Picture (EMF) PICTURE_EMF
PNG Picture PICTURE_PNG
SVG Picture SVG

TIFF Picture (Multi-Page) PICTURE_MULTITIFF
TIFF Picture PICTURE_TIFF
Pinwriter (TTY) TTY

Printer Binary File FILE

The following export targets are not supported anymore and are only available for compatibility reasons. If you still
want to use the format
LL OPTIONSTR_LEGACY_EXPORTERS_ALLOWED....) or via LL.Core.LISetOptionString(...).

have to enable

Export target Value
HTML Format HTML
HTML jQuery Mobile Format JOM

LISetOptionString(hJob,

7.1 Programming Interface

7.1.1 Global (De)activation of the Export Modules

List & Label tries to load the export extension module cmll31ex.lIx from the main DLLs path by default. All export
formats are thus automatically available when passing LL_PRINT _EXPORT as target to L/Print(WithBox)Start.

If you want to deactivate the export modules, use LL_OPTIONSTR LIXPATHLIST and pass the file name preceded
bya 7, ie. "~ cmlli31ex.lIx". The same option may be used to load the module from a different path.

A

If you want to load the export modules from a different directory, you should also use this option. For example,
you can use "c:\programs\<your application>\cmli31ex.llx, to load the export modules from your application
directory.

219

The Export Modules Programming Interface

7.1.2 Switching Specific Export Modules On/Off

Using the option LL_OPTIONSTR_EXPORTS AVAILABLE, you can get a string containing all available export media
separated by semicolons. This list also contains the standard output formats "PRN", "PRV" and "FILE". The available
export formats can be restricted by setting the option LL _OPTIONSTR _EXPORTS ALLOWED. This setting affects
the available output formats in the dialog L/PrintOptionsDialog(). Please note that the print destination parameter
in LIPrint{WithBox/Start() influences the export media as well. You should therefore use LL_OPTIONSTR_EXPORITS -
ALLOWED after it.

Example of how to enable certain exporters:

L1PrintwithBoxStart(..., LL_PRINT_EXPORT, ...);

//0nly print to preview and HTML is allowed:
L1SetOptionString(hJob, LL_OPTIONSTR_EXPORTS_ALLOWED, "PRV;HTML");
Moo

L1PrintOptionsDialog(...);

Example of how to disable the export modules:

L1PrintWithBoxStart(..., LL_PRINT_EXPORT, ...);

//Prohibits all export modules:

L1SetOptionString(hJob, LL_OPTIONSTR_EXPORTS_ALLOWED, "PRN;PRV;FILE");
M ooc

L1PrintOptionsDialog(...);

7.1.3 Selecting/Querying the Output Format

The output format can be selected/queried with a parameter for the methods L/Print/WithBox/Start(). The following
list shows the different values for this parameter:

Value Meaning

LL PRINT NORMAL "Printer" output format will be default.

LL PRINT PREVIEW | "Preview" output format will be default.

LL PRINT FILE "File" output format will be default.

LL PRINT_EXPORT An export module will be set as default output format.
After this you could use the method L/PrintSetOption-
String(LL_PRNOPTSTR_EXPORT) to specify the export
module exactly.

You can also use L/PrintSetOptionString(LL_PRNOPTSTR_EXPORT) to specify a certain output format, which will
also be the default output format in L/PrintOptionsDialogy).

Example in C++ of how to set the output format to RTF:

L1PrintWithBoxStart(..., LL_PRINT_EXPORT, ...);
L1PrintSetOptionString(hJob, LL_PRNOPTSTR_EXPORT, "RTF");
L1PrintOptionsDialog(...);

If you wish to prohibit the end user from selecting the output format, you could use the option LL_OPTIONSTR -
EXPORTS _ALLOWED to disable the other formats. Simply specify the output format you wish to force with this
option.

The end user can specify the default output format in the Designer using Project > Page Setup. The selected
export module will be set by List & Label using the option LL_PRNOPTSTR_EXPORT. Your application should take
account of this fact by determining the default output format directly or disabling this configuration opportunity in
the Designer. Otherwise your end user could be confused when he selects e.g. "RTF" in the Designer, but then
finds "HTML" as a default format for printing.

Example of how to take account of a selected export medium (if no selection has been set by the end user in the
Designer, "Preview" will be set as default):

L1PrintGetOptionString(hJob, LL_PRNOPTSTR_EXPORT, sMedia.GetBuffer(256), 256);
sMedia.ReleaseBuffer();
if (sMedia == "") //no default setting

{
L1PrintSetOptionString(hJob, LL_PRNOPTSTR_EXPORT, TEXT("PRV"));

220

The Export Modules Programming Interface

L1PrintOptionsDialog(...);

Example of how to disable the configuration option in the Designer:

L1SetOption(hJob, LL_OPTION_SUPPORTS_PRNOPTSTR_EXPORT, FALSE);
Nl ooc
L1DefineLayout(...);

Use this option to determine which output format was selected by the end user in the L/PrintOptionsDialog().
Example showing how to query the output format:

/...

L1PrintOptionsDialog(...);

L1PrintGetOptionString(hJob, LL_PRNOPTSTR_EXPORT, sMedia.GetBuffer(256), 256);
sMedia.ReleaseBuffer();

//...
if (sMedia == "PRV")
{
L1PreviewDisplay(...);
L1PreviewDeleteFiles(...); //optional
}

7.1.4 Setting Export-specific Options

The export-specific options can be set using LIXSetParameter() and queried with LIXGetParameter(). These options
are export media-specific, therefore the name of the format must be specified for each function call. Options which
are supported by all export modules can be switched simultaneously for all exporters by passing an empty string
as exporter name, ex. "Export.ShowResult". The options supported by the export media will be listed in the
following chapters.

Some of the options can be modified in the property dialog of the exporter by the end user. These options will then
be saved in the P-file by List & Label.

When using the export format "PRV" an export to a preview file can be done. Please note that in for this format only
the options Export.File, Export.Path, Export.Quiet and Export.ShowResult are supported.

7.1.5 Export Without User Interaction
Export without user interaction can be performed very easily using the methods already mentioned.
Example:

If you wish to export HTML without user interaction using the file 'Article.Ist' and 'c:\temp' as the destination
directory, you should use following code:

M ooc

L1XSetParameter(hJob, LL_LLX_EXTENSIONTYPE_EXPORT, "HTML",
"Export.File", "export.htm");

L1XSetParameter(hJob, LL_LLX_EXTENSIONTYPE_EXPORT, "HTML",
"Export.Path", "c:\\temp\\");

L1XSetParameter(hJob, LL_LLX_EXTENSIONTYPE_EXPORT, "HTML",
"Export.Quiet","1");

L1PrintWithBoxStart(hJob, LL_PROJECT_LIST, "Article.lst",
LL_PRINT_EXPORT, LL_BOXTYPE_BRIDGEMETER, hWnd,
"Exporting to HTML");

L1PrintSetOptionString(hJob, LL_PRNOPTSTR_EXPORT, "HTML");

//... normal printing Lloop ...

That's alll The meaning of the export-specific options can be found in the following chapters.

7.1.6 Querying the Export Results

To find out which files have been created as an export result, you can use the option
LL_OPTIONSTR_EXPORTFILELIST. If you query this option using L/GetOptionString() after LIPrintEnd(), the result will
be a semicolon-separated list of all files (including path) generated by List & Label. In the case of an HTML export,
the result would be a list of all HTML and JPEG files and in the case of a print to preview, the result would be a
single LL preview file.

The files created by the export will not be deleted automatically and should be deleted by your application.

221

The Export Modules Programming Reference

7.2 Programming Reference

7.2.1 PDF Export

Overview

The PDF export module creates documents in the Portable Document Format. This format can be viewed platform-

independently with the free Adobe Acrobat Reader® software.

Note on PDF encryption (PDF.Encryption...): In the past few years, nearly all countries' governments did ease
restrictions concerning products with encryption. At the moment there's to our knowledge no country which
restricts the redistribution and the usage of worldwide accepted standards which are using encryption.
Customers, who install List & Label, should be familiar with all local regulations regarding the use of encryption
and should take legal advice in order to be informed about the restrictions of the countries they are operating

n.

Limitations
Besides others, the following hints and limitations should be considered:

Fonts are automatically recognized and dynamically embedded if necessary.

Not all EMF records can be displayed accurately — if you are using complex EMFs, you should pass them as
bitmaps or choose "export as picture" in the designer.

Lines/Frames that are dashed/dotted in the layout may have a different spacing. In addition, each dash/dot is
displayed as a single PDF record. To keep the resulting file size small, continuous lines/frames should be used
for PDF export or the option "PDF.UseSimpleFrames" should be enabled.

Note for PDF/A:

¢ When using form elements in combination with PDF/A, PDF/A conformity cannot be maintained and the
form elements are deactivated.

e All fonts are always embedded.
e Encryption is not supported.

Note that not all outputs can be converted 1:1 in the respective target format. Especially with more complex
coordinate system transformations, partial transparencies and especially also with elements like EMFs, which
are not generated by List & Label, wrong representations may occur. Here it may be necessary to export the
respective elements as raster graphics or to activate the "Export as Picture" property for the respective object.

For the "Checkbox' form element, the display of the "Set" state has no effect, the default (usually simple

checkmark) of the PDF display program used is always used.

Programming Interface

You can find a description of all options used in the PDF export module in this chapter. The options can be

modified/read using the methods LIXSetParameter(..."PDF"...) and LIXGetParameter(..."PDF"...).
PDF.Title: Specifies the title of the generated PDF document.
PDF.Subject: Specifies the subject of the generated PDF document. Default: empty.

PDF.Author: Set the Author tag of the PDF file. Default: empty.
PDF.Creator: Set the Creator tag of the PDF file. Default: empty.
PDF.Keywords: Specifies the keywords of the generated PDF document. Default: empty.

PDF.Conformance: Set the PDF version to be used. If encryption is activated (see PDF.Encryption.EncryptFile) the

encryption strength will be automatically selected. Various options are available, which are explained below.
Value Meaning

pdf14 PDF version 1.4 (corresponds to Acrobat 5)

pdf15 PDF version 1.5

pdf16 PDF version 1.6 (corresponds to Acrobat 7)

pdf17 PDF version 1.7 (ISO 32000-1)

pdf20 PDF version 2.0 (ISO 32000-2)

pdfalb PDF/A-1b (ISO 19005-1, Level B compliance)

pdfala PDF/A-1a (ISO 19005-1, Level A compliance)

pdfa2b PDF/A-2b (ISO 19005-2, Level B compliance)

222

The Export Modules Programming Reference

Value Meaning

pdfa2u PDF/A-2u (ISO 19005-2, Level U compliance)
pdfa2a PDF/A-2a (ISO 19005-2, Level A compliance)
pdfa3b PDF/A-3b (ISO 19005-3, Level B compliance)
pdfa3u PDF/A-3u (ISO 19005-3, Level U compliance)
pdfa3a PDF/A-3a (ISO 19005-3, Level A compliance)
Default pdf17

PDF.Encryption.EncryptFile: If this parameter is set, the result file is encrypted. The encryption type is
automatically determined by the selected PDF version (see PDF.Conformance). There are several other options
available, which are explained below.

Value Meaning
0 Do not encrypt file
1 Encrypt file

Encryption type based on the selected PDF version:
pdf10, pdfa[x]: no encryption

pdf11, pdf12, pdf13: RC4 with a key length of 40
pdf14: RC4 with a key length of 128

pdf15, pdf16, pdf17: AES with a key length of 128

pdf20: AES with a key length of 256
Default 0

PDF.Encryption.EnablePrinting: If this parameter is set, the file can be printed even if it is encrypted. Only
effective if PDF.Encryption.EncryptFile is set to "1".

Value Meaning

0 Printing is not enabled
1 Printing is enabled
Default 0

PDF.Encryption.EnableChanging: |f this parameter is set, the file can be changed even if it is encrypted. Only
effective if PDF.Encryption.EncryptFile is set to "1".

Value Meaning

0 Changing is not enabled
1 Changing is enabled
Default 0

PDF.Encryption.EnableCopying: If this parameter is set, the file can be copied to the clipboard even if it is
encrypted. Only effective if PDF.Encryption.EncryptFile is set to "1".

Value Meaning

0 Copying is not enabled
1 Copying is enabled
Default 0

PDF.Encryption.EnableFillingForms: |f this parameter is set, any form fields and also signature fields can be filled
in and used in the PDF file despite encryption. Only effective if PDF.Encryption.EncryptFile is set to "1".

Value Meaning

0 Filling and signing are not enabled
1 Filling and signing are enabled
Default 0

223

The Export Modules Programming Reference

PDF.Encryption.EnableAnnotating: |f this parameter is set, annotations can be made in the PDF file despite
encryption. Only effective if PDF.Encryption.EncryptFile is set to "1".

Value Meaning

0 Annotating is not enabled
1 Annotating is enabled
Default 0

Note: Once the option is allowed, form and signature field filling is also automatically allowed according to the
PDF security attributes, see PDF.Encryption.EnableFillingForms.

PDF.FileAttachments: \Nith this parameter, additional files can be added to the PDF container. Pass them as
follows:

<MpyAdditionalFile1> | <MyAdditionalFileDescription1>; <MyAdditionalFile2> | <MyAdditionalFileDescription2>
PDF.OwnerPassword: The owner password for the encrypted file. This password is needed to edit the file. If no

password is given, a random password will be assigned. We recommend that you always explicitly choose a
suitable password.

PDF.UserPassword: The user password for the encrypted file. This password is needed to access the encrypted
file. If no password is given, access is possible without a password, but may be limited (see above).

PDF.UseSimpleFrames: Specifies that the simple default border lines for tables and objects such as dotted,
dashed, dashed-dotted and dashed-dotted-dotted should be drawn more effectively by Windows (different
rendering possible). This can lead to higher overall performance and smaller export files when creating reports.

Value Meaning

0 Simplified drawing of the frame lines deactivated.
1 Simplified drawing of the frame lines activated.
Default 0

PDF.ExcludedFonts: Determines which fonts should not be embedded. Some fonts (e.g. Arial, Courier) can be
identically replaced by PostScript fonts. This option can be used to explicitly exclude individual fonts from
embedding — e.g. "Arial;Courier;...". Default: "Arial".

Note: If "*"is specified, no fonts are embedded, only the name of the fonts contained. This activates the Windows
font mapping of the used PDF viewer, which then uses the most suitable font in the system for displaying. Thus,
the file size can usually be kept very small.

PDF.ZUGFeRDXmlPath: Defines the path to a ZUGFeRD compliant XML file, which should be embedded in the
final PDF. The ZUGFeRD conformance level and ZUGFeRD version are automatically read from the transferred XML
file.

Note: The file name must correspond to the ZUGFeRD version set (see PDF.ZUGFeRDVersion). The XML file
must be created before by the application itself and and its structure must be in accordance with the ClI
standard; the UBL standard is not currently supported.

Picture.JPEGQuality: Specifies the quality and the corresponding compression factor of the generated JPEG
graphic. The value lies between 0 and 100, with 100 representing the highest quality (and therefore the least
compression). Takes effect only when the source graphic is not the JPEG format, as encoding of JPEG to JPEG
would result in a quality loss. Default: 75

Export.Path: Path where the exported files should be saved. If this option is empty, a file selection dialog will
always be displayed.

Export.File: File name of the document.

Export.Quiet: Use this option to configure the possibility of exporting without user interaction.

Value Meaning

0 Export with user interaction (dialogs)

1 No dialogs or message boxes — even overwrite warnings - will be
displayed (only if Export.Path was specified).

Default 0

224

The Export Modules Programming Reference

Export. ShowResult: Specifies whether the export result will be displayed automatically. The program that displays
the result will be determined by the registered file extension.

Value Meaning

0
1

Result will not be displayed automatically
Calls ShellExecute() with Export.File.

Default 0

Export.ShowResultAvailable: Enables you to hide the respective checkbox in the dialog.

Value Meaning

0
1

Checkbox will be hidden
Checkbox will be available

Default 1

7.2.2 Excel Export

Overview

The Excel export module creates Microsoft Excel® documents. The creation is independent of any installed version
of this product, i.e. the export is native. Depending on your needs, the full layout can be conserved during export,
or only the data from table objects is exported unformatted.

Limitations
The following limitations should be considered:

Excel renders texts with an increased height compared to the standard output. Thus, all fonts are scaled down
by an optional factor. You may set this factor using the XLS.FontScalingPercentage option.

Excel does not accept any objects on the non-printable area of your printer. This results in a wider printout
compared to List & Label. This effect can be minimized by setting a zoom for the printout (see
XLS.PrintingZoom option).

RTF texts are embedded as JPEG files if the corresponding option is set. This slows down the export process
and the files quickly increase in size. We recommend that you avoid using RTF text as far as possible, or if
necessary reset the resolution of the image files (see below). By default, RTF texts are exported without
formatting. (see Verbosity.RTF).

Tabs will be replaced by blanks.

The option 'Separators fixed' in the table object is not supported.

The option 'Fixed size' in the table object is not supported.

Fill patterns that can be set in List & Label are not taken into account.

Chart and HTML objects are exported as pictures and thus cannot appear transparently.

The print order of lines and rectangles is disregarded, lines and rectangle frames always appear in the
foreground.

The print order of texts and rectangles is disregarded; text always appears in the foreground.

Texts partially overlapping filled rectangles are filled completely.

Overlapping text and picture objects are ignored.

Lines that are neither horizontal nor vertical are ignored.

Picture objects are rendered with a white frame.

Large filled areas in projects with many different object coordinate values can decrease the speed remarkably.
Line widths are ignored.

Rectangle shadows cannot be exported.

If coordinates of different objects are very close to each other but not identical, frame lines may become
invisible because Excel cannot display them anymore.

Rotated RTF objects and pictures are not supported.

Objects that are exported as pictures must not extend out of their object frame. Therefore, for example,
barcode objects with a fixed bar width must be designed in the Designer in such a way that the content always
finds room in the object rectangle.

If the coordinates of two objects are only slightly different (i.e. a fraction of a millimeter), frame lines might
become invisible as Excel is not capable of displaying them correctly.

Gradient fills are not supported.

225

The Export Modules Programming Reference

e Texts rotated by 180° are not supported and are displayed with 0° rotation.
e Custom drawings in callbacks are not supported.

e Paragraph spacing is not supported.

e Negative values for spacing are not supported.

e The maximum number of Excel columns is limited to 256.

e |ssue print is not supported.

e Shadow Pages are not supported.

e The wrapping option 'Minimum Size' in the crosstab object is not supported.
e Expandable Regions for crosstabs are not supported.

e Frame inner offsets are not supported.

e Very large amounts of data with various cell formats, RTF texts, graphics, coordinate ranges, etc. can lead to
the memory consumption of a 32-bit application reaching its limits. If the pure data can also be output without
formatting etc., the less memory intensive simple text-based CSV export can be an alternative. If, however,
more memory must be made available, then switching the application to 64-bit can be a solution.

e Background color of the report container is not supported.

e For the security option "Protect spreadsheets" no Unicode characters and a maximum length of 29 characters
are supported for the password.

e Horizontal wrapping is suppressed because a corresponding scroll bar is automatically provided for this
purpose.

e Linked crosstabs are not supported.
e Frames around individual tables and background colors of individual tables are not supported.
e Active links for directory entries in index and table of contents are not supported.

Programming Interface

You can find a description of all options used in the XLS export module in this chapter. The options can be modified
using the methods LiXSetParameter(..."XLS"...) and read by calling LIXGetParameter(..."XLS"...).

Resolution: Defines the resolution in dpi for the generation of pictures. Default: 300 dpi.

Picture.BitsPerPixel: Defines the color depth of the generated picture. Please note that the picture files will quickly
get very large with higher color depths.

Value Meaning

1 Black & White
24 24bit True Color
Default 24

Picture.JPEGQuality: Specifies the quality and the corresponding compression factor of the generated JPEG
graphic. The value lies between 0 and 100, with 100 representing the highest quality (and therefore the least
compression). Takes effect only when the source graphic is not the JPEG format, as encoding of JPEG to JPEG
would result in a quality loss. Default: 75

Verbosity.Rectangle: Configures how rectangle objects should be exported.

Value Meaning

0 Ignore object

1 Object as rectangle
2 Object as picture
Default 1

Verbosity.Barcode: Configures how barcode objects should be exported.

Value Meaning

0 Ignore object

1 Object as picture
Default 1

Verbosity.Drawing: Configures how picture objects should be exported.

Value Meaning
0 Ignore object

226

The Export Modules Programming Reference

1 Object as picture
Default 1

Verbosity.Ellipse: Configures how ellipse objects should be exported.

Value Meaning

0 Ignore object

1 Object as picture
Default 1

Verbosity.Line: Configures how line objects should be exported.

Value Meaning

0 Ignore object

1 Object as line

2 Object as picture
Default 1

Verbosity.Text: Configures how text objects should be exported.

Value Meaning

0 Ignore object

1 Object as text object
2 Object as picture
Default 1

Verbosity.RTF: Configures how RTF objects should be exported.

Value Meaning

0 Ignore object

1 As unformatted text
2 Object as picture
Default 1

Verbosity.Table: Configures how table objects should be exported.

Value Meaning

0 Ignore object

1 As a complete table object
Default 1

Verbosity.LLXObject: Configures how LLX objects (e.g. chart object) should be exported.

Value Meaning

0 Ignore object

1 Object as JPEG
Default 1

XLS.FontScalingPercentage: Scaling factor for the font sizes. Necessary in order to compensate for the increased
text height in Excel. Maximum value: 100, Default: 89

XLS.PrintingZoom: Scaling factor for the printout of the project. Necessary in order to compensate for the inability
to place any objects in the non-printable area. Default: 88 (=88% zoom)

XLS.IgnoreGrouplines: Allows group header and footer lines to be ignored in the resulting Excel file. Only
effective if Export.OnlyTabledata has been set (see below).

Value Meaning

0 Group lines are exported
1 Group lines are ignored
Default 1

227

The Export Modules Programming Reference

XLS.IgnoreHeaderFooterLines: Allows header and footer lines to be ignored in the resulting Excel file. Only
effective if Export.OnlyTabledata has been set.

Value Meaning

0 Header and footer lines are exported

1 Header and footer lines are ignored

2 Header and footer lines are exported once on the first page. To

export the footer lines only on the last page, set the appearance
condition to LastPage().
Default 1

XLS.IgnoreLinewrapForDataOnlyExport: Allows line wraps to be ignored. Only effective if Export.OnlyTabledata
has been set.

Value Meaning

0 Line wraps are exported to Excel
1 Line wraps are ignored

Default 1

XLS.ConvertNumeric: Allows switching of the automatic conversion of numeric values in the created Excel sheet.

Value Meaning
0 No automatic conversion
1 Numeric values are formatted according to the setting in the

Designer under 'File > Options > Project.
2 Only columns which actually contain a numeric value (e.g. a price)

will be converted. If a numeric column is explicitly formatted in List
& Label (e.g. Str$(price,0,0)), then it will not be converted.

3 List & Label tries to transform the output formatting configured in
the Designer to Excel as exact as possible. If the "Format" property
in the Designer is not used, the content will be passed as Number
to Excel in case it's numeric, otherwise as Text.

Default 3

XLS.AllPagesOneSheet: Enables the creation of a separate XLS worksheet for each page.

Value Meaning

0 Create separate worksheet for each page

1 All pages are added to the same worksheet
Default 1

XLS.WorksheetName: Configures the name of the worksheet(s). You can use the format identifier "%d" in the
name. It will be replaced by the page number at runtime (ex. "Report page %d").

XLS.FileFormat: Configures the file format.

Value Meaning

0 Format is recognized automatically by the file extension
1 Office XML (XLSX) format will be used

2 Excel (XLS) format will be used

Default 0

XLS.ShowGridLines: Allows to show or hide the grid lines.

Value Meaning

0 Grid lines are hidden
1 Grid lines are shown
Default 1

228

The Export Modules Programming Reference

XLS.AutoFormula: Allows automatic conversion of Excel formulas.

Value Meaning

0 No automatic conversion.

1 Texts that start with "=" are automatically transferred to Excel as a formula.
Default 0

Note: Please note that it is mandatory to use the English function names (e.g. "SUM" instead of the German
"SUMME"), the corresponding localization to "SUMS" is done automatically by Excel. Helpful in this context is
the Microsoft website https://support.microsoft.com/en-us/office/excel-functions-translator-f262d0c0-991c-
485b-89b6-32cc8d326889. Likewise, fixed numbers must be specified in US notation (e.g. 3.1415 instead of
3,1415). Otherwise, a defective Excel export may be the result.

XLS.Protection.ProtectSheets: Allows to prevent various manipulations such as deleting, inserting or formatting
of spreadsheets by password protection.

Value Meaning

0 No protection.

1 All spreadsheets are protected against editing.
Default 0

XLS.Protection.ProtectSheetsPassword: Specifies the password for XLS. Protection. ProtectSheets, which can be
used to unprotect the Excel file later. Default: empty

XLS.Protection.ProtectSheetsMode: Type of protection if XLS.Protection.ProtectSheets is set to "1". Either -1 or
an OR-ed mixture of the following flags can be passed.

Value Meaning

-1 Default protection.

0 All spreadsheets are protected against editing.
1 Objects are locked.

2 Scenarios are locked.

4 Formatting of cells is allowed.

8 Formatting of columns is allowed.
16 Formatting of rows is allowed.

32 Inserting columns is allowed.

64 Inserting rows is allowed.

128 Inserting hyperlinks is allowed.

256 Deleting columns is allowed.

512 Deleting rows is allowed.

1024 Selection of locked cells is locked.
2048 Sorting is allowed.

4096 Autofilters are allowed.

8192 Pivot tables are allowed.

16384 Selection of unlocked cells is locked.
Default -1

XLS.AutoFit: \When exporting data only, the column widths are automatically adjusted so that the content is
completely visible.

229

https://support.microsoft.com/en-us/office/excel-functions-translator-f262d0c0-991c-485b-89b6-32cc8d326889
https://support.microsoft.com/en-us/office/excel-functions-translator-f262d0c0-991c-485b-89b6-32cc8d326889

The Export Modules Programming Reference

Value Meaning

0 No adjustment.

1 Column widths are adjusted. Can significantly reduce the speed of the export,
so use it if the priority is optimized design and not processing speed.

Default 0

XLS.HeaderContent: This can be used to specify the content of the header. The text can be up to 255 characters
long and can contain special commands, e.g. a placeholder for the page number, the current date or text formatting
attributes. The following commands are possible:

Value Meaning

&L Beginning of left section

&P Current page number

&N Total page number
&\d{1,3} Font size in points (e.g. &9 or &36)
&S Text strikethrough

&x Text superscript

&Y Text subscript

&C Beginning of middle section
&D Date

&T Time

&u Text underlined

&E Text double underlined

&R Beginning of right section
&Z Path of a workbook file

&F Name of a workbook file

&A Name of a worksheet

&'fontname" | Text font (e.g. &' Comic Sans MS")

&B Text bold
&l Text italic
&& Ampersand character (&)

XLS.HeaderMargin: Margin of the header in inches for XLS. HeaderContent.

XLS.FooterContent: This can be used to specify the content of the footer. The text can be up to 255 characters
long and can contain special commands, e.g. a placeholder for the page number, the current date or text formatting
attributes. See XLS.HeaderContent for possible commands.

XLS.FooterMargin: Margin of the footer in inches for XLS.FooterContent.

Export.Path: Path where the exported files should be saved. If this option is empty, a file selection dialog will
always be displayed.

Export.File: File name of the document.

Export.iInfinitePage: This "endlessly" increases the size of the page output, you get an export that is not divided
by breaks (unless you work with "Pagebreak Before", then the page will still be wrapped there). For this it is
mandatory to set the XLS.AllPagesOneSheet option to 1, so that all pages are created in the same worksheet.

Value Meaning

0 Single pages
1 Infinite page
Default 0

Export.Quiet: Use this option to configure the possibility of exporting without user interaction.

Value Meaning
0 Export with user interaction (dialogs)

230

The Export Modules Programming Reference

1 No dialogs or message boxes will be displayed (only if Export.Path
was specified).
Default 0

Export. ShowResult: Specifies whether the export result will be displayed automatically. The program that displays
the result will be determined by the registered file extension.

Value Meaning

0 Result will not be displayed automatically
1 Calls ShellExecute() with Export.File.
Default 0

Export.ShowResultAvailable: Enables to hide the respective checkbox in the dialog.

Value Meaning

0 Checkbox will be hidden

1 Checkbox will be available
Default 1

Export.OnlyTableData: Only data from table lines will be exported.

Value Meaning
0 All objects are exported.
1 Only table cells and their data are exported. The font properties

"Bold", "ltalic" and the horizontal alignment of the text is used in
the result file. Other format options are ignored to ensure best
reusability of the result in Excel.

Default 0

7.2.3 Word Export

Overview

The Word export module creates documents in Microsoft Word® format. The creation is executed independently
from the installation of the product, it is therefore natively supported. A full layout-preserving export is executed.
Tables are created on continuous pages to support editing later.

Limitations

Please note the following limitations and hints for the Word export module:

e Requires .NET Framework 4.8.

e Compatible with Microsoft Word® 2010 and higher.

e |t is recommended that the width of all columns of a line matches the total width of the report container.
During the design, try always to justify the borders of different cells that occur in multiple table sections
(header line, data line etc.) or multiple line definitions. Otherwise, the result can be falsified in Microsoft Word.

e Table lines that contain a picture will be exported with a fixed height.

e A mix of different page formats is not supported. To achieve an export of e.g. portrait and landscape format,
all pages of the same format can be each exported to a separate document.

e Due to format restrictions, it might be necessary to adapt the report's layout before exporting to DOCX. We
suggest to thoroughly testing the output before redistribution. Also, note the options
DOCX.CellScalingPercentageHeight and DOCX.CellScalingPercentageWidth.

e Tabulators are not supported.

e Issue print is not supported.

e The fit option "compress" in the properties of a column is not supported.

e Shadow Pages are not supported.

e The option 'Separators fixed' in the table object is not supported.

e The option 'Fixed size' in the table object is not supported.

e The wrapping option 'Minimum Size' in the crosstab object is not supported.

e When using the option DOCX.FloatingTableMode it is not possible to use a report container that contains
multiple objects with different structures.

e Frame inner offsets are not supported.
e Columns of type Table' will be exported as picture.

231

The Export Modules Programming Reference

e Anchoring lines is not supported.

e Certain control characters cannot be displayed in Microsoft Word and are therefore filtered out of texts using
the. NET Framework method Char.IsControl().

e Table of contents and index are only exported as simple tables without links.

e Line spacing is not directly supported. However, these can be simulated with the help of blank lines and the
properties "Inerasable" (Yes) and "Blank Optimization" (No). Alternatively, it is also possible to use "Chr$(13)"
without setting the above properties.

e Background color of the report container is not supported.

e The "Fill Horizontally" property for multi-column tables is not supported correctly.

e Two-part gradients are not supported for ellipse objects, only horizontal and vertical gradients (bright).
e Linked crosstabs are not supported.

e Frames around individual tables and background colors of individual tables are not supported.

e Active links for directory entries in index and table of contents are not supported.

e With reverse printing, only the first page is printed; all other pages have a blank (white) reverse side.

Programming Interface

You can find a description of all options used in the DOCX export module in this chapter. These options can be
modified/read by the application wusing the methods LiXSetParameter(.."DOCX"..) and LIXGet-
Parameter(..."DOCX"...).

Resolution: Defines the resolution in dpi for the generation of pictures. Default: 96dp/, screen resolution.

Picture.BitsPerPixel: Defines the color depth of the generated pictures.

Value Meaning

1 Black & White
24 24bit True Color
Default 24

Picture.JPEGQuality: Specifies the quality and the corresponding compression factor of the generated JPEG
graphic. The value lies between 0 and 100, with 100 representing the highest quality (and therefore the least
compression). Takes effect only when the source graphic is not the JPEG format, as encoding of JPEG to JPEG
would result in a quality loss. Default: 75

Verbosity.Rectangle: Configures how rectangle objects should be exported.

Value Meaning

0 Ignore object

1 Object as rectangle
2 Object as picture
Default 1

Verbosity.Barcode: Configures how barcode objects should be exported.

Value Meaning

0 Ignore object

1 Object as picture
Default 1

Verbosity.Drawing: Configures how picture objects should be exported.

Value Meaning

0 Ignore object

1 Object as picture
Default 1

Verbosity.Ellipse: Configures how ellipse objects should be exported.

Value Meaning

0 Ignore object

1 Object as ellipse
2 Object as picture
Default: 1

232

The Export Modules Programming Reference

Verbosity.Line: Configures how line objects should be exported.

Value Meaning

0 Ignore object

1 Object as line

2 Object as picture
Default 1

Verbosity.Text: Configures how text objects should be exported.

Value Meaning

0 Ignore object

1 Object as text object
2 Object as picture
Default 1

Verbosity.RTF: Configures how RTF objects should be exported.

Value Meaning

0 Ignore object

1 As formatted text

2 As unformatted text
3 Object as picture
Default 1

Verbosity.Table: Configures how table objects should be exported.

Value Meaning

0 Ignore object

1 As a complete table object
Default 1

Verbosity.NestedTable: Configures how nested table objects should be exported.

Value Meaning

0 Ignore object

1 Object as picture
Default 1

Verbosity.LLXObject: Configures how LLX objects (OLE, HTML, chart) should be exported.

Value Meaning

0 Ignore object

1 Object as picture
Default: 1

DOCX.AllPagesOneFile: Enables creation of a separate Word document for each page.

Value Meaning

0 A separate Word document is create per page

1 All pages are created in the same Word document
Default 1

DOCX.Author: Sets the Author property in the Word file. Default: empty.

DOCX.FloatingTableMode: Enables if tables will be linked. For a larger number of pages with tables this option
should be set to '0', because Microsoft Office Word can only link up to 86 (depending on the Word version) tables.

Value Meaning

0 Table won't be linked
1 Tables will be linked
Default 1

233

The Export Modules Programming Reference

DOCX.CellScalingPercentageHeight: Scaling factor (with decimal places) to correct the cell heights. Default: 100
(=100% cell height)

DOCX.CellScalingPercentageWidth: Scaling factor (with decimal places) to correct the cell widths. Default: 100
(=100% cell width)

DOCX.FontScalingPercentage: Scaling factor to correct font sizes. Default: 100 (=100% font size)
DOCX.IgnoreCellPadding: Defines whether the Border Spacing will be ignored.

Value Meaning

0 Border Spacing will not be ignored
1 Border Spacing will be ignored
Default 0

DOCX.Keywords: Sets the Tags property in the Word file. Default: empty.
DOCX.Subject: Sets the Subject property in the Word file. Default: empty.
DOCX.Title: Sets the Title property in the Word file. Default: empty.

Export.File: Defines the file name of the generated Word document. If empty, the file selection dialog will be
displayed.

Export.Path: Defines the path of the generated Word document.

Export.Quiet: Use this option to configure the possibility of exporting without user interaction.

Value Meaning

0 Export with user interaction (dialogs)

1 No dialogs or message boxes will be displayed (only if Export.File
was specified).

Default 0

Export. ShowResult: Specifies whether the export result will be displayed automatically. The program that displays
the result will be determined by the registered file extension.

Value Meaning

0 Result will not be displayed automatically

1 Calls ShellExecute() with Export. File so that usually Microsoft
Word® should be executed.

Default 0

7.2.4 PowerPoint Export

Overview

The PowerPoint export module creates documents in Microsoft PowerPoint® format. The creation is executed
independently from the installation of the product; it is therefore natively supported. A full layout-preserving export
is executed.

Limitations

Please note the following limitations and hints for the PowerPoint export module:

e Requires .NET Framework 4.8.

e Compatible with Microsoft PowerPoint® 2010 and higher.

e It is recommended that the width of all columns of a line matches the total width of the report container.
During the design, try to always justify the borders of different cells that occur in multiple table sections
(header line, data line etc.) or multiple line definitions. Otherwise the result can be falsified in Microsoft Word.

e Columns cannot be smaller than 0,54 cm (5,4mm). All columns will be automatically resized to this Size by
Microsoft PowerPoint.

e Fonts will be reduced by 1%, otherwise the result can be wrong in Microsoft PowerPoint.
e Table lines that contain a picture will be exported with a fixed height.

e A mix of different page formats is not supported. To achieve an export of e.g. portrait and landscape format,
all pages of the same format can be each exported to a separate document.

e Tabulators are not supported.
e Issue print is not supported.

234

The Export Modules Programming Reference

e Shadow Pages are not supported.

e Nested tables will be exported as image by default.

e The wrapping option 'Minimum Size' in the crosstab object is not supported.

e PowerPoint adjusts pictures to the height of the line.

e Frame inner offsets are not supported.

e The "Fill Horizontally" property for multi-column tables is not supported correctly.

e Linked crosstabs are not supported.

e Frames around individual tables and background colors of individual tables are not supported.

Programming Interface

You can find a description of all options used in the PowerPoint export module in this chapter. These options can
be modified/read by the application using the methods LIXSetParameter(..."PPTX "..) and LIXGet-
Parameter(..."PPTX"...).

Resolution: Defines the resolution in dpi for the generation of pictures. Default: 96dp/, screen resolution.

Picture.BitsPerPixel: Defines the color depth of the generated pictures.

Value Meaning

1 Black & White
24 24bit True Color
Default 24

Picture.JPEGQuality: Specifies the quality and the corresponding compression factor of the generated JPEG
graphic. The value lies between 0 and 100, with 100 representing the highest quality (and therefore the least
compression). Takes effect only when the source graphic is not the JPEG format, as encoding of JPEG to JPEG
would result in a quality loss. Default: 75

Verbosity.Rectangle: Configures how rectangle objects should be exported.

Value Meaning

0 Ignore object

1 Object as rectangle
2 Object as picture
Default 1

Verbosity.Barcode: Configures how barcode objects should be exported.

Value Meaning

0 Ignore object

1 Object as picture
Default 1

Verbosity.Drawing: Configures how picture objects should be exported.

Value Meaning

0 Ignore object

1 Object as picture
Default 1

Verbosity.Ellipse: Configures how ellipse objects should be exported.

Value Meaning

0 Ignore object

1 Object as ellipse
2 Object as picture
Default: 1

Verbosity.Line: Configures how line objects should be exported.

Value Meaning

0 Ignore object

1 Object as line

2 Object as picture

235

The Export Modules Programming Reference

Default 1

Verbosity.Text: Configures how text objects should be exported.

Value Meaning

0 Ignore object

1 Object as text object
2 Object as picture
Default 1

Verbosity.RTF: Configures how RTF objects should be exported.

Value Meaning

0 Ignore object

1 Object as picture
Default 1

Verbosity.Table: Configures how table objects should be exported.

Value Meaning

0 Ignore object

1 As a complete table object
Default 1

Verbosity.NestedTable: Configures how nested table objects should be exported.

Value Meaning

0 Ignore object

1 Object as picture
Default 1

Verbosity.LLXObject: Configures how LLX objects (OLE, HTML, chart) should be exported.

Value Meaning

0 Ignore object

1 Object as picture
Default: 1

PPTX.FontScalingPercentage: Scaling factor to correct font sizes. Default: 100 (=100% font size)
PPTX.Animation: Defines the used Transition for a slide change
Value Meaning
No Animation
Cut-Animation
Fade-Animation
Push-Animation

Cover-Animation

a b~ W N = O

Wipe-Animation
Default 0

Export.File: Defines the file name of the generated PowerPoint document. If empty, the file selection dialog will
be displayed.

Export.Path: Defines the path of the generated PowerPoint document.

Export.Quiet: Use this option to configure the possibility of exporting without user interaction.

Value Meaning

0 Export with user interaction (dialogs)

1 No dialogs or message boxes will be displayed (only if Export.File
was specified).

Default 0

236

The Export Modules Programming Reference

Export.ShowResult: Specifies whether the export result will be displayed automatically. The program that displays
the result will be determined by the registered file extension.

Value Meaning
0 Result will not be displayed automatically
1 Calls ShellExecute() with Export.File so that usually Microsoft
PowerPoint® should be executed.
Default 0
7.25 RTF Export
Overview

The RTF export module creates documents in Rich Text Format based on Microsoft specification 1.5/1.7. The
exported files have mainly been optimized for Microsoft Word. Please note that the rendering of the exported files
can differ with different word processors.

Limitations
Besides others, the following hints and limitations should be considered:

¢ Rows that are anchored to each other are not correctly exported.
e The max. color depth is 24 bit (PNG: 32bit).

e Shadows of rectangle objects are not supported.

e Tabs will be replaced by blanks.

e Objects should not be placed too close to the page borders. Some word processors create page breaks in
such cases. This means that all following objects will then automatically be placed on the next page.

e The option 'Separators fixed' in the table object is not supported.
e The table option "Fixed size" is not supported

e Not all background patterns available in List & Label can be transformed to RTF. The number of patterns
available in RTF is much smaller than that of the patterns available in List & Label.

e The chart and HTML object are exported as pictures and thus cannot appear transparently.
e Rotated RTF texts, plaintext and pictures are not supported.

e Frames around objects are not supported.

e Gradient fills are not supported.

e Objects that are exported as images must not protrude from their object frame. Therefore, for example,
barcode objects with a fixed bar width must be designed in the Designer in such a way that the content always
finds room in the object rectangle.

e Custom drawings in callbacks are not supported.

e TotalPages$() may not be used in rotated text objects.
e Paragraph spacing is not supported.

e |ssue print is not supported.

e Shadow Pages are not supported.

e Nested tables are only supported one level (i.e. no subtable support) if they are not exported as picture (see
Verbosity.NestedTable below).

e The wrapping option 'Minimum Size' in the crosstab object is not supported.

e Tablecellsinthe crosstab object, that horizontally and vertically overlap multiple other cells cannot be exported
exactly.

e Linked crosstabs are not supported.
e Frames around individual tables and background colors of individual tables are not supported.

e If fields have a background color and the associated line definitions have a border, the border area is also
colored with the background color.

Known specialities in general:
e Frames smaller than 2 pt will not be displayed correctly.
e Positon frames in Word are handled unusual, because length properties are interpreted incorrect by Word.

e Thin line objects may be not displayed because the corresponding bitmap gets an offset causing the line
object to be out of the frame.

237

The Export Modules Programming Reference

e Table frames might not always be displayed correctly.
e Distances between cells are not supported.
e Not all colors that can be used in List & Label are interpreted correctly by Word.

e When exporting large images at large resolutions, these images are sometimes not displayed by Word
although they are referenced correctly in the RTF.

e \We recommend to make any objects and table cells more generous in height and width, because RTF uses
additional inner spacing in some areas, which are of course not visible in the Designer.

Programming Interface

You can find a description of all options used in the RTF export module in this chapter. The options can be
modified/read using the methods LiXSetParameter(..."RTF"...) and LiIXGetParameter(..."RTF"...).

Resolution: Defines the resolution in dpi for the transformation of the coordinates and the generation of pictures.
Default: 96 dp/, screen resolution.

Picture.BitsPerPixel: Defines the color depth of the generated picture. Please note that the picture files will quickly
get very large with higher color depths.

Value Meaning

1 Black & White

4 16 Colors

8 256 Colors

24 24bit True Color
Default 24

UsePosFrame: Switches the text positioning method.

Value Meaning

0 Text boxes used for positioning

1 Position frames used for positioning
Default 0

Verbosity.Rectangle: Configures how rectangle objects should be exported.

Value Meaning

0 Ignore object

1 Object as frame
Default 1

Verbosity.Barcode: Configures how barcode objects should be exported.

Value Meaning

0 Ignore object

1 Object as picture
Default 1

Verbosity.Drawing: Configures how picture objects should be exported.

Value Meaning

0 Ignore object

1 Object as picture
Default 1

Verbosity.Ellipse: Configures how ellipse objects should be exported.

Value Meaning

0 Ignore object

1 Object as picture

2 Object as shape object
Default 2

Verbosity.Line: Configures how line objects should be exported.

238

The Export Modules Programming Reference

Value Meaning

0 Ignore object

1 Object as picture

2 Object as shape object
Default 2

Verbosity.Text: Configures how text objects should be exported.

Value Meaning

0 Ignore object

1 Object as text object
2 Object as picture
Default 1

Verbosity.RTF: Configures how RTF objects should be exported.

Value Meaning

0 Ignore object

1 As formatted RTF text
2 Object as picture
Default 1

Verbosity.Table: Configures how table objects should be exported.

Value Meaning

0 Ignore object

1 As a complete table object
Default 1

Verbosity.NestedTable: Configures how nested table objects should be exported.

Value Meaning

0 Ignore object

1 As a complete table object
2 Object as picture

Default 1

Verbosity.LLXObject: Configures how LLX objects (e.g. chart object) should be exported.

Value Meaning

0 Ignore object

1 Object as JPEG
Default 1

Export.Path: Path where the exported files should be saved.

Export.File: File name of the RTF document. If this option is set to an empty string, a file selection dialog will
always be displayed.

Export.Quiet: Use this option to configure the possibility of exporting without user interaction.

Value Meaning

0 With user interaction (dialogs)

1 No dialogs or message boxes — even overwrite warnings - will be
displayed (only if Export. File was specified).

Default 0

Export. ShowResult: Specifies whether the export result will be displayed automatically. The program that displays
the result will be determined by the registered file extension.

Value Meaning
0 Result will not be displayed automatically
1 Calls ShellExecute() with Export.File

239

The Export Modules Programming Reference

Default 0

Export.ShowResultAvailable: Enables you to hide the respective checkbox in the dialog.

Value Meaning
0 Checkbox will be hidden
1 Checkbox will be available
Default 1
7.2.6 XPS Export
Overview

The XPS export format is available as soon as .NET Framework 3.5 is installed on the computer. The export module
uses the installed Microsoft XPS printer driver for the output.
Limitations

e The driver does not currently support all clipping options of the Windows GDI. This can result in display errors
in the XPS file when exporting charts and generally truncated/clipped objects.

e Linked crosstabs are not supported.
e Frames around individual tables and background colors of individual tables are not supported.

Programming Interface

You can find a description of all options used in the XPS export module in this chapter. The options can be modified
using the methods LiXSetParameter(..."XPS"...) and read by calling LIXGetParameter(..."XPS"...).

Export.Path: Path where the exported files should be saved.
Export.File: File name of the document. If this option is empty, a file selection dialog will always be displayed.

Export.Quiet: Use this option to configure the possibility of exporting without user interaction.

Value Meaning

0 Export with user interaction (dialogs)

1 No dialogs or message boxes — even a overwrite warning - will be
displayed (only if Export.Path was specified).

Default 0

Export.ShowResult: Specifies whether the export result will be displayed automatically. The program that displays
the result will be determined by the associated file type.

Value Meaning

0 Result will not be displayed automatically
1 Calls ShellExecute() with Export.File.
Default 0

Export. ShowResultAvailable: Enables you to hide the respective checkbox in the dialog.

Value Meaning

0 Checkbox will be hidden

1 Checkbox will be available
Default 1

7.2.7 XHTML/CSS Export

The XHTML export module creates XHTML code according to the XHTML 1.0 specification and CSS code according
to the CSS 2.1 specification.

Overview

The export module collects all List & Label objects for the page currently being printed and orders them according
to their height, width and position. The position of an object results from two values: left and top. They specify the
distance from the upper left page border. All objects are positioned absolutely on a page, which leads to a more
accurate export result.

Limitations
There are limitations set by the target format. The most important are listed now.

240

The Export Modules Programming Reference

Rows that are anchored to each other are not correctly exported.

Decimal tabs will be transformed to right-aligned tabs.

Any other tabs will be transformed to a blank.

The option 'Line break' in text objects and table columns is always active in the export result.
The option 'Separators fixed' in table objects is not supported.

The chart object is exported as a picture and thus cannot appear transparently.

The transformation of RTF text to HTML code is carried out by an RTF parser. This parser interprets the basic
RTF formatting. Extended RTF functionality such as embedded objects will be ignored.

Gradient fills are not completely supported.

Objects to be exported as picture should not overlap the object frame. Therefore e.g. barcode objects with
fixed bar width must fit in the object rectangle.

Custom drawings in callbacks must be exported as picture.

Table frames of neighboring cells are not drawn so that they overlap each other, but discretely. This can double
the frame width and needs to be considered during the design.

Even if the HTML object wraps over several pages, it will be exported in one stream, i.e. no page wrap will
occur.

Embedded scripting functionalities may be lost.

Issue print is not supported.

Rotated descriptions are not supported.

Shadow Pages are not supported.

The wrapping option 'Minimum Size' in the crosstab object is not supported.
The property "Link" is not supported.

Background color of the report container is not supported.

If the "Fit" property for a table row is set to "Shrink", tables may overlap across the page. To prevent this, the
"Export as Picture" property can be used.

Horizontal wrapping is suppressed because a corresponding scroll bar is automatically provided for this
purpose.

The "Fill Horizontally" property for multi-column tables is not supported correctly.

Linked crosstabs are not supported.

Frames around individual tables and background colors of individual tables are not supported.
Frames of picture objects are not supported.

With reverse printing, only the first page is printed; all other pages have a blank (white) reverse side.
The following restrictions apply to form controls:

e Types "Edit", "Combobox": The "Force Input" property is not supported.

e Type "Edit": The "Validation Expression" property is not supported.

e Type "Button": The export is only executed if the "Action" property is set to "Send via HTTP POST". Please
note that in Web Report Designer, the action cannot be selected when creating a new button and is set
automatically. Buttons therefore do not work in Web Report Designer if they have been configured with
a different action in the Windows Designer. Here, the type of the form control can be changed to another
type and then back to Button so that the action is set correctly.

e Type "Button": The "URL" and "Additional Fields" properties of the "Action" property are ignored.

e Type "Button": Only the form data of the pages that were displayed before the button (on any page) was
clicked is exported. Example: If only the first and last pages of a b-page report were displayed, only the
form data of these pages 1 and 5 will be exported.

e Type "Checkbox": The "Background" property is only applied if the checkbox is "pressed".
e Type "Checkbox": The browser's default icon is always used.

e Type "Combobox": The "Editable" property is not supported.

The "Shrink" option of the text object property "Line Wrap" is not supported.

Programming Interface

You can find a description of all options used in the XHTML export module in this chapter. These options can be
modified/read using the methods LiXSetParameter(..."XHTML"...) and LiIXGetParameter(..."XHTML"...).

Resolution: Defines the resolution in dpi for the transformation of the coordinates and the generation of pictures.
Default: 96

241

The Export Modules Programming Reference

Picture.JPEGQuality: Specifies the quality and the corresponding compression factor of the generated JPEG
graphic. The value lies between 0 and 100, with 100 representing the highest quality (and therefore the least
compression). Takes effect only when the source graphic is not the JPEG format, as encoding of JPEG to JPEG
would result in a quality loss. Default: 75

Picture.BitsPerPixel: Defines the color depth of the generated picture. Please note that the picture files will quickly
get very large with higher color depths.

Value Meaning

1 Black & White
24 24bit True Color
Default 24

Verbosity.Rectangle: Configures how rectangle objects should be exported.

Value Meaning

0 Ignore object

1 Object as JPEG (and also as a complete rectangle for objects with
colored background).

Default 1

Verbosity.Barcode: Configures how barcode objects should be exported.

Value Meaning

0 Ignore object

1 Object as JPEG
Default 1

Verbosity.Drawing: Configures how picture objects should be exported.

Value Meaning

0 Ignore object

1 Object as JPEG
Default 1

Verbosity.Ellipse: Configures how ellipse objects should be exported.

Value Meaning

0 Ignore object

1 Object as JPEG
Default 1

Verbosity.Line: Configures how line objects should be exported.

Value Meaning

0 Ignore object

1 Object as JPEG
Default 1

Verbosity.Text: Configures how text objects should be exported.

Value Meaning

0 Ignore object

1 Object as text object
2 Object as JPEG
Default 1

Verbosity.Text.Frames: Configures how text object frames should be exported.

Value Meaning

0 Single frames for top, bottom, left, right (uses CSS)
1 Complete frame as box

Default 0

242

The Export Modules Programming Reference

Verbosity.RTF: Configures how RTF objects should be exported.

Value Meaning

0 Ignore object

1 As formatted RTF text (parsed and converted to HTML)

2 As unformatted text (uses the default font specified in the project
file)

3 Object as JPEG

Default 1

Verbosity.RTF.Frames: Configures how RTF object frames should be exported.

Value Meaning

0 Single frames for top, bottom, left, right (uses CSS)
1 Complete frame as box

Default 0

Verbosity.Table: Configures how table objects should be exported.

Value Meaning

0 Ignore object

1 As a table object
Default 1

Verbosity.Table.Cell: Configures how table cells should be exported.

Value Meaning

0 Ignore cell

1 As a cell object using the verbosity settings of the object types
specified in the cell.

2 Cells as JPEG

Default 1

Verbosity.Table.Frames: Configures how table frames should be exported.

Value Meaning

0 Ignore table frame

1 Only horizontal lines of table frames

2 The whole table line including all frames
3 Cell-specific frames (uses CSS)

Default 3

Verbosity.LLXObject: Configures how LLX objects (e.g. chart object) should be exported.

Value Meaning

0 Ignore object

1 Object as JPEG
Default 1

Verbosity.LLXObject. HTMLObj: Configures how the HTML object should be exported.

Value Meaning

0 Ignore object

1 Object as JPEG

2 Object as embedded HTML. Only the HTML text between the

<BODY> and </BODY> tags will be exported. Please note the
hint on exporting limitations.
Default 2

243

The Export Modules Programming Reference

XHTML.DrawingsAsSVG: Specifies the format in which chart objects are exported.

Value Meaning

0 Object as PNG (legacy mode)
1 Object as SVN (new mode)
Default 1

XHTML.EnableAccessibility: Enables the accessibility.

Value Meaning
0 Accessibility is deactivated.
1 Accessibility is activated. Please note that the files will be

minimally larger and insufficient contrasts will be compensated by
brightness changes.
Default 1

XHTML.FixedHeader: The header is fixed and remains visible while scrolling.

Value Meaning

0 Header is not fixed.
1 Header is fixed.
Default 0

XHTML.Title: Specifies the title of the generated XHTML document.
XHTML. ToolbarType: Specifies if an additional toolbar will be created.

Value Meaning

0 No toolbar will be created.

1 A toolbar with color scheme Skyblue will be created.
2 A toolbar with color scheme Blue will be created.

3 A toolbar with color scheme Black will be created.

4 A toolbar with color scheme Web will be created.
Default 4

XHTML.UseAdvancedCSS: Allows the usage of non-standard CSS formatting styles.

Value Meaning

0 No non-standard CSS formatting styles are used

1 Non-standard CSS formatting styles may be used, e.g. to create a
gradient fill.

Default 1

XHTML.UseOriginalURLsForlmages: Specifies from where images will be loaded from.

Value Meaning

0 Images will be temporarily stored on the local machine.
1 Images will be loaded from their original path.

Default 0

XHTML.UseSeparateCSS: Specifies if a separate CSS file will be created.

Value Meaning

0 CSS wiill be added to the HEAD area of the XHTML file.
1 CSS wiill be created in a separate file.

Default 0

Layouter.Percentaged: This option configures whether the layout should be defined in absolute values or with
values expressed as percentage.

Value Meaning

0 Layout of the X coordinates in absolute values (pixel)

1 Layout of the X coordinates with values expressed as percentage
Default 0

244

The Export Modules Programming Reference

Layouter.FixedPageHeight: Configures whether all pages should be forced to have the same page height.

Value Meaning

0 Layout can shrink on the last page (e.g. if no objects have been
placed in the page footer)

1 The page height is set as configured

Default 1

Export.Path: Path where the exported files should be saved. If this option is empty, a file selection dialog will
always be displayed.

Export.File: File name of the first HTML page. Default: "index.htm". You may also use printf format strings like
"%d" in the file name (ex. "Export Page %d.htm"). In this case, the files for the pages will be named by replacing
the placeholder with the correctly formatted page number. Otherwise, you will get a simple page numbering for
the result files.

Export.InfinitePage: This "endlessly" increases the size of the page output, you get an export that is not divided
by breaks (unless you work with "Pagebreak Before", then the page will still be wrapped there).

Value Meaning

0 Single pages
1 Infinite page
Default 0

Export.AllinOneFile: Configures the export result format.

Value Meaning

0 Every printed page will be exported in a single HTML file.

1 The result is a single HTML file (Export.File), containing all printed
pages.

Default 1

Export.Quiet: Use this option to configure the possibility of exporting without user interaction.

Value Meaning

0 Export with user interaction (dialogs)

1 No dialogs or message boxes will be displayed (only if Export.Path
was specified).

Default 0

Export.ShowResult: Specifies whether the export result will be displayed automatically. The program that displays
the result will be determined by the registered file extension.

Value Meaning

0 Result will not be displayed automatically
1 Calls ShellExecute() with Export.File.
Default 0

Export. ShowResultAvailable: Enables you to hide the respective checkbox in the dialog.

Value Meaning

0 Checkbox will be hidden

1 Checkbox will be available
Default 1
Hyperlinks

Hyperlinks can be embedded in text, table and RTF objects directly in the Designer using the Hyperlink$() function.
Dynamic hyperlinks and formulas can be realized in this way.

Alternatively, the "Link" property can be used.

245

The Export Modules Programming Reference

7.2.8 MHTML Export

Overview

The MHTML (Multi Mime HTML) export module functions analogously to the XHTML export module. However,
pictures are embedded MIME encoded into the export file. Thus, the result is only one file ((MHT). This is most
useful for sending invoices by mail, as the recipient can open the file directly and does not need any access to
further (external) picture files.

Limitations
The restrictions of the XHTML export module apply analogously.

Programming Interface

All options of the XHTML exporter are supported; pass "MHTML" as module name. The option Export.AllinOneFile
will be ignored, as this format always results in one file only.

7.29 JSON Export

Overview

The JSON Export module is internally based on Text (CSV) Export and is therefore subject to similar restrictions.
Similar to CSV, data from table objects is returned here and transferred to a JSON structure. The table rows form
the record, while the header row is used to determine the identifiers used in JSON. Footer lines, group header
lines, group footer lines and all objects outside the table, such as freely placed texts, are ignored. The result is a
single file in JSON format that contains the data from all table objects. This can then be used for further processing
in other applications. Please note that in this mode only data from tables is exported and no layout information is
evaluated. This also means, for example, that layout-related breaks are filtered from the exported text. This mode
is only available for table projects.

Limitations
The JSON Export module has the following limitations:

e |ssue print is not supported.

e Nested tables are not supported.
e Free objects or texts within the layout are not supported.

e Headers, footers, group headers and group footers are not supported. However, the header lines determine
the identifiers in the data lines.

e Line breaks within the table lines are not supported. To exclude this as a possible source of error, the use of
infinite pages is recommended.

e Projects that use a table of contents or an index are not supported.
e Linked crosstabs are not supported.
e Frames around individual tables and background colors of individual tables are not supported.

Programming Interface

You can find a description of all options used in the JSON export module in this chapter. The options can be
modified using the methods LiXSetParameter(..."JSON"...) and read by calling LIXGetParameter(..."JSON"...).

Export.Path: Path where the exported files should be saved.

Export.File: File name of the document. If this option is empty, a file selection dialog will always be displayed,
default "export.json".

Export.iInfinitePage: This "endlessly" increases the size of the page output, you get an export that is not divided
by breaks (unless you work with "Pagebreak Before", then the page will still be wrapped there).

Value Meaning

0 Single pages
1 Infinite page
Default 1

Export.Quiet: Use this option to configure the possibility of exporting without user interaction.

Value Meaning
0 Export with user interaction (dialogs)
1 No dialogs or message boxes will be displayed (only if Export.Path

was specified).

246

The Export Modules Programming Reference

Default 0

Export. ShowResult: Specifies whether the export result will be displayed automatically. The program that displays
the result will be determined by the associated file type.

Value Meaning

0 Result will not be displayed automatically
1 Calls ShellExecute() with Export.File.
Default 0

Export.ShowResultAvailable: Enables you to hide the respective checkbox in the dialog.

Value Meaning

0 Checkbox will be hidden

1 Checkbox will be available
Default 1

TXT.Charset: Specifies the character set of the result file. The target code page needs to be passed in addition
(e.g. 932 for Japanese) using LL_OPTION_CODEPAGE.

Value Meaning

ANSI Ansi character set
ASCII Ascii character set
UNICODE Unicode character set
UTF8 UTF8 character set
Default UNICODE

JSON.AutodetectDatatype: This can be used to define whether all table columns should be output as text or with
an automatically assigned JSON type.

Value Meaning
0 Output as text
1 Output with data type (Null, numeric, date, text)
Default 1
7.2.10 Text (CSV) Export
Overview

The CSV-Export exports data from table objects to a text format. The separator and framing character can be
optionally set. The result is one single text file containing the data from all table objects. Please note that the layout
is not preserved in any way, this is purely a data conversion export.

Limitations

e |ssue print is not supported.

e Nested tables are not supported.

e Linked crosstabs are not supported.

e Frames around individual tables and background colors of individual tables are not supported.

Programming Interface

You can find a description of all options used in the TXT export module in this chapter. The options can be modified
using the methods LiXSetParameter(..."TXT"...) and read by calling LIXGetParameter(..."TXT"...).

Export.File: File name of the document. If this option is empty, a file selection dialog will always be displayed,
default "export.txt".

Export.InfinitePage: This "endlessly" increases the size of the page output, you get an export that is not divided
by breaks (unless you work with "Pagebreak Before", then the page will still be wrapped there).

Value Meaning

0 Single pages
1 Infinite page
Default 1

Export.Path: Path where the exported files should be saved.

247

The Export Modules Programming Reference

Export.Quiet: Use this option to configure the possibility of exporting without user interaction.

Value Meaning

0 Export with user interaction (dialogs)

1 No dialogs or message boxes will be displayed (only if Export.Path
was specified).

Default 0

Export. ShowResult: Specifies whether the export result will be displayed automatically. The program that displays
the result will be determined by the associated file type.

Value Meaning

0 Result will not be displayed automatically
1 Calls ShellExecute() with Export.File.
Default 0

Export.ShowResultAvailable: Enables you to hide the respective checkbox in the dialog.

Value Meaning

0 Checkbox will be hidden

1 Checkbox will be available
Default 1

TXT.Charset: Specifies the character set of the result file. The target code page needs to be passed in addition
(e.g. 932 for Japanese) using LL_OPTION _CODEPAGE.

Value Meaning

ANSI Ansi character set
ASCII Ascii character set
UNICODE Unicode character set
UTF8 UTF8 character set
Default UNICODE

TXT.FrameChar: Specifies the framing character for the columns.

Value Meaning

NONE No framing

! " as framing character
"as framing character

TXT.IgnoreGrouplLines: Allows group header and footer lines to be ignored in the resulting text file.

Value Meaning

0 Group lines are exported
1 Group lines are ignored
Default 1

TXT.lgnoreHeaderFooterLines: Allows header and footer lines to be ignored in the resulting text file.

Value Meaning

0 Header and footer lines are exported

1 Header and footer lines are ignored

2 Header and footer lines are exported once on the first page. To

export the footer lines only on the last page, set the appearance
condition to LastPage().
Default 1

248

The Export Modules Programming Reference

TXT.IgnoreLinewrapForDataOnlyExport: Allows line wraps to be ignored. Ensure the use of a valid framing
character (see TXT.FrameChar).

Value Meaning

0 Line wraps are exported
1 Line wraps are ignored
Default 1

TXT.SeparatorChar: Specifies the separator character.

Value Meaning
NONE No separator
TAB Tab as separator

BLANK Blank as separator
, as separator
; as separator

7.2.11 Text (Layout) Export

Overview

The Layout-Export can alternatively create a text file that resembles — as far as the format allows — the layout of the
project. Please make sure that you choose a font size that is large enough in the Designer. If the lines of text in
your project cannot be assigned to different lines in the text file, lines may be overwritten, resulting in a loss of
data in the result file. A font size with a minimum of 12 pt is suggested.

Limitations

e |ssue print is not supported.

e Shadow Pages are not supported.

e Nested tables are not supported.

e Linked crosstabs are not supported.

e Frames around individual tables and background colors of individual tables are not supported.

Programming Interface

You can find a description of all options used in the Text export module in this chapter. The options can be modified
using the methods LiXSetParameter{(..."TXT LAYOUT"...) and read by calling LIXGetParameter(..."TXT LAYOUT"...).

Verbosity.Text: Configures how text typed columns should be exported.

Value Meaning

0 Ignore cell
1 Cell as text
Default 1

Verbosity.RTF: Configures how RTF typed columns should be exported.

Value Meaning

0 Ignore cell

1 As RTF stream

2 As unformatted text
Default 2

Verbosity.Table: Configures how table objects should be exported.

Value Meaning

0 Ignore object

1 As a table object
Default 1

Verbosity.Table.Cell: Configures how table cells should be exported.

Value Meaning

249

The Export Modules Programming Reference

0 Ignore cell

1 As a cell object using the verbosity settings of the object types
specified in the cell.

Default 1

Export.Path: Path where the exported files should be saved.

Export.File: File name of the document. If this option is empty, a file selection dialog will always be displayed,
default "export.txt".

Export.InfinitePage: This "endlessly" increases the size of the page output, you get an export that is not divided
by breaks (unless you work with "Pagebreak Before", then the page will still be wrapped there).

Value Meaning

0 Single pages
1 Infinite page
Default 1

Export.Quiet: Use this option to configure the possibility of exporting without user interaction.

Value Meaning

0 Export with user interaction (dialogs)

1 No dialogs or message boxes will be displayed (only if Export.Path
was specified).

Default 0

Export.ShowResult: Specifies whether the export result will be displayed automatically. The program that displays
the result will be determined by the associated file type.

Value Meaning

0 Result will not be displayed automatically
1 Calls ShellExecute() with Export.File.
Default 0

Export. ShowResultAvailable: Enables you to hide the respective checkbox in the dialog.

Value Meaning

0 Checkbox will be hidden

1 Checkbox will be available
Default 1

Export.AllInOneFile: Configures the export result format.

Value Meaning

0 Every printed page will be exported in a single TXT file. If the
filename contains the format identifier "%d", this identifier will be
repaced by the corresponding page number.

1 The result is a single TXT file (Export.File), containing all printed
pages.
Default 1

TXT.Charset: Specifies the character set of the result file.

Value Meaning

ANSI Ansi character set
ASCII Ascii character set
UNICODE Unicode character set
UTF8 UTF8 character set
Default UNICODE

250

The Export Modules Programming Reference

7.2.12 XML Export

Overview

The XML export module creates XML files. This allows flexible editing by other applications. All available object
properties are exported. If you require, you may export data from tables only and ignore all further object properties.

Limitations

e |ssue print is not supported.

e Linked crosstabs are not supported.

e Frames around individual tables and background colors of individual tables are not supported.

Programming Interface

You can find a description of all options used in the XML export module in this chapter. These options can be
modified/read using the methods LiXSetParameter(..."XML"...) and LIXGetParameter{..."XML"...).

Resolution: Defines the resolution in dpi for the transformation of the coordinates and the generation of pictures.
Default: 96 dp/, screen resolution.

Picture.JPEGQuality: Specifies the quality and the corresponding compression factor of the generated JPEG
graphic. The value lies between 0 and 100, with 100 representing the highest quality (and therefore the least
compression). Takes effect only when the source graphic is not the JPEG format, as encoding of JPEG to JPEG
would result in a quality loss. Default: 75

Picture.JPEGEncoding: Specifies how to encode JPEG images

Value Meaning

0 Save JPEGS as (external) files

1 Include pictures MIME encoded into the XML file
2 Ignore JPEG images

Default 0

Picture.BitsPerPixel: Defines the color depth of the generated picture. Please note that the picture files will quickly
get very large with higher color depths.

Value Meaning

1 Black & White
24 24bit True Color
Default 24

Verbosity.Rectangle: Configures how rectangle objects should be exported.

Value Meaning

0 Ignore object

1 Complete object information
2 Object as JPEG

Default 1

Verbosity.Barcode: Configures how barcode objects should be exported.

Value Meaning

0 Ignore object

1 Complete object information and object as JPEG
Default 1

Verbosity.Drawing: Configures how picture objects should be exported.

Value Meaning

0 Ignore object

1 Complete object information and object as JPEG
Default 1

Verbosity.Ellipse: Configures how ellipse objects should be exported.

251

The Export Modules Programming Reference

Value Meaning

0 Ignore object

1 Complete object information
2 Object as JPEG

Default 1

Verbosity.Line: Configures how line objects should be exported.

Value Meaning

0 Ignore object

1 Complete object information
2 Object as JPEG

Default 1

Verbosity.Text: Configures how text objects should be exported.

Value Meaning

0 Ignore object

1 Object as text object
2 Object as JPEG
Default 1

Verbosity.RTF: Configures how RTF objects should be exported.

Value Meaning

0 Ignore object

1 As RTF stream

2 As unformatted text (uses the default font specified in the project
file)

3 Object as JPEG

Default 1

Verbosity.Table: Configures how table objects should be exported.

Value Meaning

0 Ignore object

1 As a table object
Default 1

Verbosity.Table.Cell: Configures how table cells should be exported.

Value Meaning

0 Ignore cell

1 As a cell object using the verbosity settings of the object types
specified in the cell.

2 Cells as JPEG

Default 1

Verbosity.LLXObject: Configures how LLX objects (e.g. chart object) should be exported.

Value Meaning

0 Ignore object

1 Complete object information and object as JPEG
Default 1

XML.Title: Specifies the title of the generated XML document.

Export.Path: Path where the exported files should be saved. If this option is empty, a file selection dialog will
always be displayed.

Export.File: File name of the first XML page. Default: "export.xml". You may also use printf format strings like "%d"
in the filename (ex. "Export Page %d.xml"). In this case, the files for the pages will be named by replacing the

252

The Export Modules Programming Reference

placeholder with the correctly formatted page number. Otherwise, you will get a simple page numbering for the
result files.

Export.AllinOneFile: Configures the export result format.

Value Meaning

0 Every printed page will be exported in a single XML file.

1 The result is a single XML file (Export.File), containing all printed
pages.

Default 1

Export.Quiet: Use this option to configure the possibility of exporting without user interaction.

Value Meaning

0 Export with user interaction (dialogs)

1 No dialogs or message boxes — including overwrite warnings - will
be displayed (only if Export.Path was specified).

Default 0

Export.ShowResult: Specifies whether the export result will be displayed automatically. The program that displays
the result will be determined by the registered file extension.

Value Meaning

0 Result will not be displayed automatically.
1 Calls ShellExecute() with Export.File.
Default 0

Export.ShowResultAvailable: Enables you to hide the respective checkbox in the dialog.

Value Meaning

0 Checkbox will be hidden

1 Checkbox will be available
Default 1

Export.OnlyTableData: Only data from table lines will be exported.

Value Meaning

0 All objects are exported.

1 Only table cells and their data are exported.
Default 0

7.2.13 Picture Export

Overview

This module creates a graphics file (JPEG, BMP, EMF, TIFF, Multi-TIFF, PNG) for every printed page. The file names
of the created graphics will be enumerated. If the file name contains the format identifier "%d", this identifier will
be replaced by the page number.

Limitations
e |ssue print is not supported.

Programming Interface

You can find a description of all options used in the picture export module in this chapter. The options can be
modified/read using the methods LIXSetParameter(..."<Exportername>"...) and LIXGet-
Parameter(..."<Exportername>"...). <Exportername> can be "PICTURE _JPEG", "PICTURE BMP", "PICTURE _EMF",
"PICTURE_TIFF", "PICTURE_MULTITIFF" or "PICTURE_PNG" depending on the graphic format.

Resolution: Defines the resolution in dpi for the transformation of the coordinates and the generation of pictures.
Default: 96 dp/, screen resolution.

Picture. JPEGQuality: Specifies the quality and the corresponding compression factor of the generated JPEG
graphic. The value lies between 0 and 100, with 100 representing the highest quality (and therefore the least
compression). Takes effect only when the source graphic is not the JPEG format, as encoding of JPEG to JPEG
would result in a quality loss. Default: 75

253

The Export Modules Programming Reference

Picture.BitsPerPixel: Defines the color depth of the generated picture. Please note that the picture files will quickly
get very large with higher color depths. Not all picture formats can display all color depths.

Value Meaning

1 Black & White

4 16 Colors

8 256 Colors

24 24bit True Color

Default JPEG, PNG: 24, Other: 8

Picture.CropFile: Removes dispensable white frame. Supported export formats: PNG, JPEG and TIFF. This option
is not supported when used in services (e.g. IIS) as GDI+ is not available there.

Value Meaning

0 Image will not be cropped
1 Image will be cropped
Default 0

Picture.CropFrameWidth: Defines the border of a cropped file in pixel.

Export.File: File name containing "%d" as format identifier. The files for the pages will be named by replacing the
placeholder by the page number. If you do not set this option, you will get a simple page numbering for the result
files. If this option is empty, a file selection dialog will always be displayed.

Export.Path: Path where the exported files should be saved.

Export.Quiet: Use this option to configure the possibility of exporting without user interaction.

Value Meaning

0 With user interaction (dialogs)

1 No dialogs or message boxes will be displayed (only if Export.Path
was specified).

Default 0

Export. ShowResult: Specifies whether the export result will be displayed automatically. The program that displays
the result will be determined by the registered file extension.

Value Meaning

0 Result will not be displayed automatically

1 Calls ShellExecute() with the first generated graphic file.
Default 0

Export. ShowResultAvailable: Enables you to hide the respective checkbox in the dialog.

Value Meaning

0 Checkbox will be hidden

1 Checkbox will be available
Default 1

TIFF.CompressionType: Specifies the compression type for the TIFF export. Please note that not all viewers
support compression. For CCITTRLE, CCITT3 and CCITT4 Picture.BitsPerPixel must be set to 1 or to 24 for JPEG.

Value Meaning

None No compression

CCITTRLE | CCITT Modified Huffmann RLE
CCITT3 CCITT Group 3 Fax encoding
CCITT4 CCITT Group 4 Fax encoding

JPEG JPEG DCT compression
ZIP ZIP compression

LZW LZW compression
Default None

TIFF.CompressionQuality: Specifies the compression quality for the TIFF export. Default: 75

254

The Export Modules Programming Reference

7.2.14 SVG Export

Overview

The SVG export module creates SVG code according to the Scalable Vector Graphics (SVG) 1.1 (Second Edition)
specification.

Limitations
There are limitations set by the target format. The most important are listed now.

e Rows that are anchored to each other are not correctly exported.

e Tabs and multiple sequential spaces are not supported.

e The option 'Line break' in text objects and table columns is always active in the export result.
e The option 'Separators fixed' in table objects is not supported.

e The table option "fixed size" is not supported.

e RTF text will be exported as pictures.

e Objects to be exported as picture should not overlap the object frame.

e Custom drawings in callbacks are not supported.

e Table frames of neighboring cells are not drawn so that they overlap each other, but discretely. This can double
the frame width and needs to be taken into account during the design.

e TotalPages$() may not be used in rotated text objects.

e Even if the HTML object wraps over several pages, it will be exported in one stream, i.e. no page wrap will
occur.

e Embedded scripting functionalities may be lost.
e Shadow Pages are not supported.

e A mix of different page formats is not supported. To achieve an export of e.g. portrait and landscape format,
all pages of the same format can be each exported to a separate document.

e |ssue print is not supported.

e Note that not all outputs can be converted 1:1 in the respective target format. Especially with more complex
coordinate system transformations, partial transparencies and especially also with elements like EMFs, which
are not generated by List & Label, wrong representations may occur. Here it may be necessary to export the
respective elements as raster graphics or to activate the "Export as Picture" property for the respective object.

Programming Interface
You can find a description of all options used in the SVG export module in this chapter. These options can be
modified/read using the methods LiXSetParameter(..."SVG"...) and LIXGetParameter(..."SVG"...).

Export.Path: Path where the exported files should be saved. If this option is empty, a file selection dialog will
always be displayed.

Export.File: File name of the first SVG page. Default: "index.svg". You may also use printf format strings like "%d"
in the file name (ex. "Export Page %d.svg"). In this case, the files for the pages will be named by replacing the
placeholder with the correctly formatted page number. Otherwise, you will get a simple page numbering for the
result files.

Export.Quiet: Use this option to configure the possibility of exporting without user interaction.

Value Meaning

0 Export with user interaction (dialogs)

1 No dialogs or message boxes will be displayed (only if Export.Path
was specified).

Default 0

Export. ShowResult: Specifies whether the export result will be displayed automatically. The program that displays
the result will be determined by the registered file extension.

Value Meaning

0 Result will not be displayed automatically
1 Calls ShellExecute() with Export.File.
Default 0

Export.ShowResultAvailable: Enables you to hide the respective checkbox in the dialog.

255

The Export Modules Programming Reference

Value Meaning

0 Checkbox will be hidden

1 Checkbox will be available
Default 1

7.2.15 TTY Export

Overview

The TTY export format can be used to directly communicate with dot matrix printers. This brings a great
performance boost compared to the printer driver approach.

Limitations
e Linked crosstabs are not supported.
e Frames around individual tables and background colors of individual tables are not supported.

Programming Interface

You can find a description of all options used in the TTY export module in this chapter. The options can be modified
using the methods LiXSetParameter{(..."TTY"...) and read by calling LIXGetParameter(..."TTY"...).

Export.Path: Path where the exported PRN file should be saved.
Export.File: File name of the PRN file. If this option is empty, a file selection dialog will always be displayed.

Export.Quiet: Use this option to configure the possibility of exporting without user interaction.

Value Meaning

0 Export with user interaction (dialogs)

1 No dialogs or message boxes will be displayed (only if Export.Path
was specified).

Default 0

TTY.AdvanceAfterPrint: Specifies the behavior when the print job is finished.

Value Meaning
FormFeed Form feed
ToNextLabel Advances to the next label

AfterNextLabel | Leaves one blank label as separator

TTY.Emulation: Specifies the emulation used for the export.

Value Meaning

ESC/P ESC/P emulation

ESC/P 9Pin ESC/P emulation for 9-pin dot matrix printers
PlainTextANSI Plain text ANSI emulation

PlainTextASCII Plain text ASCIl emulation
PlainTextUNICODE Plain text Unicode emulation

NEC Pinwriter NEC Prinwriter emulation

IBM Proprinter XL24 IBM Proprinter XL24 emulation

PCL PCL emulation

TTY.Destination: Export target. Possible values are "LPT1:", "LPT2:",..."FILE:" or "FILE: <Filename>". If "FILE:" is
used, a file selection dialog will be displayed.

TTY.DefaultFilename: Default file name for this dialog.

7.2.16 Windows Fax Export

You can send List & Label documents directly as a fax using the fax service of Windows. If you connect a fax
modem to such an operating system, the fax driver will be automatically installed in most versions of these
operationg systems.

256

The Export Modules Programming Reference

Additional information is needed for automatic fax sending (that is, no dialog will be displayed for the fax
destination, cover page etc.). You can preset these parameters using the LL_OPTIONSTR_FAX... option strings
(see LISetOptionString()).

Example:
HLLJOB hJob;
hJob = L1JobOpen (0) ;
LlSetOptionString (hJob, LL OPTIONSTR FAX RECIPNAME,

"combit") ;

L1SetOptionString (hJob, L _OPTIONSTR_FAX RECIPNUMBER,
"+497531906018") ;

L1SetOptionString (hJob, LL_OPTIONSTR FAX SENDERNAME,
"John Doe");

L1lSetOptionString (hJob, LL OPTIONSTR FAX SENDERCOMPANY,
"Sunshine Corp.");

L1lSetOptionString (hJob, LL OPTIONSTR FAX SENDERDEPT,
"Development") ;

L1lSetOptionString (hJob, LL OPTIONSTR FAX SENDERBILLINGCODE,
"4711") ;

/]

LlJobClose (hJob) ;

If these options are not set and the user has not entered any expressions in the fax parameters dialog, export to
MS FAX will not be available.

This module has no programming interface.

Various established fax applications can be used from List & Label with the corresponding printer (fax) driver. If the
fax application supports passing of the fax number by the document, the number input dialog can be suppressed
in most cases. To use e.g. David from the company Tobit, you can use the @@-command. Place a text object in
the Designer and insert the line:

"@@NUMBER "+<fax number resp. field name>+"Q@"

The fax driver knows the syntax and sends the print job without any user interaction with the placed fax number.
Other fax applications offer similar possibilities — we recommend taking a look at the documentation of your fax
application.

7.2.17 Unsupported Export Formats

The following export formats are not supported anymore and are only available for compatibility reasons. If you
stil want to wuse the format you have to enable it explicity via LISetOptionString(hJob,
LL OPTIONSTR_LEGACY EXPORTERS ALLOWED.,...) or via LL.Core.LISetOptionString(...).

HTML Export
The HTML export module creates HTML 4.01 code (with some limitations).

Overview

The export module collects all List & Label objects for the page currently being printed and places them in a large
HTML table (the layout grid) corresponding to their physical position on the page. The sizes of the columns and
rows in this table are a result of the X and Y coordinates of all objects.

The end user can choose an option from the HTML export settings to determine whether the column widths of the
layout grid should be values expressed as percentage (based on the current window size of the browser) or
absolute values (in pixels). The advantage of absolute positions is that the result of the export is a more precise
representation of the original layout (in the Designer). Representation with percentage positions has the advantage
that it is normally more easily printable than the other representations. This is due to the fact that the browsers
can resize this kind of representation.

Because each different X and Y coordinate results in another column or row in the layout grid, you should pay
attention to the design of your layout. Objects should generally be aligned with the same edges. This results in a
less complex layout grid, which can be loaded more quickly by the browser.

The HTML 4.01 standard does not support overlapping objects. When you have objects, which overlap in the
original layout, only the object with the lowest order (the object printed first) will be exported. The other overlapping
objects will be ignored.
Exception: colored rectangle objects in the background. This effect is achieved by filling the cell (in the layout grid)
of the next object over the rectangle.

Limitations
There are also other limitations set by the target format. The most important are listed now.

257

The Export Modules Programming Reference

e Rows that are anchored to each other are not correctly exported.

e Overlapping objects (except rectangles) are not supported.

e Rectangles cannot have any frames. Transparent rectangles will be ignored.

e Decimal tabs will be transformed to right-aligned tabs.

e Any other tabs will be transformed to a blank.

e 'Paragraph spacing' and 'Line distance'in text objects are not supported.

e The option 'Line break' in text objects and table columns is always active in the export result.
e The option 'Separators fixed' in table objects is not supported.

e The left offset in the first column of a table line will be ignored.

e The list object option "fixed size" is not supported.

e The chart object is exported as a picture and thus cannot appear transparently.

e The transformation of RTF text to HTML code is carried out by an RTF parser. This parser interprets the basic
RTF formatting. Extended RTF functionality such as embedded objects will be ignored.

e Spacing before table lines is not supported.

e Horizontal and vertical lines are exported as images; all other lines are ignored.
e Gradient fills are not supported.

e Rotated text (RTF and plaintext) is not supported.

e Custom drawings in callbacks are not supported.

e Objects to be exported as picture should not overlap the object frame.

e Table frames of neighboring cells are not drawn so that they overlap each other, but discretely. This can double
the frame width and needs to be taken into account during the design.

e Offset of table lines is not supported.

e TotalPages$() may not be used in rotated text objects.

e Shadow Pages are not supported.

e The wrapping option 'Minimum Size' in the crosstab object is not supported.
e The property "Link" is not supported.

The following tags or attributes superseding HTML 4.01 standard will be used:

e Ending the page frame for HTML pages will use browser specific tags.

e Setting line color for the table grid (<table BORDERCOLOR="#ff0000">) is browser specific.

e Setting line color for horizontal table lines (<hr COLOR="#ff0000">) is browser specific.

If the HTML object is not exported as picture but as HTML text, the part of the stream between the <body> and
</body> tags will be embedded. This by definition leads to the following limitations:

e Cascading Style Sheets are not completely supported.

e Page formatting such as background color, margins etc. is lost.

e HTML does not allow scaling. The exported result may thus differ from the layout in the Designer, especially
when the HTML object contains the contents of a whole web site.

e Even if the HTML object wraps over several pages, it will be exported in one stream, i.e. no page wrap will
occur.

e Embedded scripting functionalities may be lost.
e |ssue print is not supported.

Programming Interface

You can find a description of all options used in the HTML export module in this chapter. These options can be
modified/read using the methods LiXSetParameter(..."HTML"...) and LIXGetParameter(..."HTML"...).

Resolution: Defines the resolution in dpi for the transformation of the coordinates and the generation of pictures.
Default: 96 dp/ screen resolution.

Picture.JPEGQuality: Specifies the quality and the corresponding compression factor of the generated JPEG
graphic. The value lies between 0 and 100, with 100 representing the highest quality (and therefore the least
compression). Takes effect only when the source graphic is not the JPEG format, as encoding of JPEG to JPEG
would result in a quality loss. Default: 75

Picture.BitsPerPixel: Defines the color depth of the generated picture. Please note that the picture files will quickly
get very large with higher color depths.

258

The Export Modules

Programming Reference

Value Meaning

1 Black & White
24 24bit True Color
Default 24

Verbosity.Rectangle: Configures how rectangle objects should be exported.

Value Meaning

0 Ignore object

1 Object as JPEG (and also as a complete rectangle for objects with
colored background).

Default 1

Verbosity.Barcode: Configures how barcode objects should be exported.

Value Meaning

0 Ignore object

1 Object as JPEG
Default 1

Verbosity.Drawing: Configures how picture objects should be exported.

Value Meaning

0 Ignore object

1 Object as JPEG
Default 1

Verbosity.Ellipse: Configures how ellipse objects should be exported.

Value Meaning

0 Ignore object

1 Object as JPEG
Default 1

Verbosity.Line: Configures how line objects should be exported.

Value Meaning

0 Ignore object

1 Object as JPEG
Default 1

Verbosity.Text: Configures how text objects should be exported.

Value Meaning

0 Ignore object

1 Object as text object
2 Object as JPEG
Default 1

Verbosity.Text.Frames: Configures how text object frames should be exported.

Value Meaning

0 Single frames for top, bottom, left, right (uses CSS)
1 Complete frame as box

Default 0

Verbosity.RTF: Configures how RTF objects should be exported.

Value Meaning
0 Ignore object
1 As formatted RTF text (parsed and converted to HTML)

259

The Export Modules Programming Reference

2 As unformatted text (uses the default font specified in the project
file)

3 Object as JPEG

Default 1

Verbosity.RTF.Frames: Configures how RTF object frames should be exported.

Value Meaning

0 Single frames for top, bottom, left, right (uses CSS)
1 Complete frame as box

Default 0

Verbosity.Table: Configures how table objects should be exported.

Value Meaning

0 Ignore object

1 As a table object
Default 1

Verbosity.Table.Cell: Configures how table cells should be exported.

Value Meaning

0 Ignore cell

1 As a cell object using the verbosity settings of the object types
specified in the cell.

2 Cells as JPEG

Default 1

Verbosity.Table.Frames: Configures how table frames should be exported.

Value Meaning

0 Ignore table frame

1 Only horizontal lines of table frames

2 The whole table line including all frames
3 Cell-specific frames (uses CSS)

Default 3

Verbosity.LLXObject: Configures how LLX objects (e.g. chart object) should be exported.

Value Meaning

0 Ignore object

1 Object as JPEG
Default 1

Verbosity.LLXObject. HTMLObj: Configures how the HTML object should be exported.

Value Meaning

0 Ignore object

1 Object as JPEG

2 Object as embedded HTML. Only the HTML text between the

<BODY> and </BODY> tags will be exported. Please note the
hint on exporting limitations.
Default 2

HTML.Title: Specifies the title of the generated HTML document.

Layouter.Percentaged: This option configures whether the layout should be defined in absolute values or with
values expressed as percentage.

Value Meaning
0 Layout of the X coordinates in absolute values (pixel)
1 Layout of the X coordinates with values expressed as percentage

260

The Export Modules Programming Reference

Default 0

Layouter.FixedPageHeight: Configures whether all pages should be forced to have the same page height.

Value Meaning

0 Layout can shrink on the last page (e.g. if no objects have been
placed in the page footer)

1 The page height is set as configured

Default 1

Export.Path: Path where the exported files should be saved. If this option is empty, a file selection dialog will
always be displayed.

Export.File: File name of the first HTML page. Default: "index.htm". You may also use printf format strings like
"%d" in the file name (ex. "Export Page %d.htm"). In this case, the files for the pages will be named by replacing
the placeholder with the correctly formatted page number. Otherwise, you will get a simple page numbering for
the result files.

Export.AllinOneFile: Configures the export result format.

Value Meaning

0 Every printed page will be exported in a single HTML file.

1 The result is a single HTML file (Export.File), containing all printed
pages.

Default 1

Export.Quiet: Use this option to configure the possibility of exporting without user interaction.

Value Meaning

0 Export with user interaction (dialogs)

1 No dialogs or message boxes will be displayed (only if Export.Path
was specified).

Default 0

Export.ShowResult: Specifies whether the export result will be displayed automatically. The program that displays
the result will be determined by the registered file extension.

Value Meaning

0 Result will not be displayed automatically
1 Calls ShellExecute() with Export.File.
Default 0

Export. ShowResultAvailable: Enables you to hide the respective checkbox in the dialog.

Value Meaning

0 Checkbox will be hidden

1 Checkbox will be available
Default 1
Hyperlinks

Hyperlinks can be embedded in text, table and RTF objects directly in the Designer using the Hyperlink$() function.
Dynamic hyperlinks and formulas can be realized in this way.

Another way of creating hyperlinks is via the object name. The names of text and picture objects are parsed for
the string "/LINK: <url>". Whenever this string is found, a hyperlink is generated. Thus, if you name your picture
object "combit /LINK:https://www.combit.net", this would create a picture hyperlink during export to HTML.

JQM Export

Overview

The JOM (jQuery Mobile) export creates HTML formatted reports using the jQuery Mobile framework and
Javascript. The created files are optimized for display on mobile devices. Information about JQM can be found on

261

The Export Modules Programming Reference

jguerymobile.com. The framework is loaded from a CDN (Content Delivery Network); therefore, an active internet
connection is required for display.

Limitations
There are several limitations due to the target format. The most important are:

e The created pages are optimized for display on mobile devices.

e Only tables are exported and therefore only list projects are supported.

e Table of contents and index are not supported.

e Text, RTF text and HTML text in table cells are specially supported. All other objects will be exported as picture.
e Only footer lines of the last page or the last ones of a table are supported, as this export is not page based.

e With local access the according rights (IE) have to exist to be able to load the pages. With some browsers,
access to file:// can cause problems. As soon as the pages are accessed via http://, the problem should not
occur anymore.

e |ssue print is not supported.

e Shadow Pages are not supported.
e Nested tables will be exported as image.

Programming Interface

You can find a description of all options used in the JOM export module in this chapter. These options can be
modified/read using the methods LIXSetParameter(..."JOM'"...) and LIXGetParameter{(..."JOM"...).

Resolution: Defines the resolution in dpi for the transformation of the coordinates and the generation of pictures.
Default: 96 dpi/, screen resolution.

Picture.JPEGQuality: Specifies the quality and the corresponding compression factor of the generated JPEG
graphic. The value lies between 0 and 100, with 100 representing the highest quality (and therefore the least
compression). Takes effect only when the source graphic is not the JPEG format, as encoding of JPEG to JPEG
would result in a quality loss. Default: 75

Picture.BitsPerPixel: Defines the color depth of the generated pictures.

Value Meaning

1 Black & White
24 24bit True Color
Default 32

Picture.Format: Defines the format of the generated pictures.

Value Meaning
JPG JPEG picture
PNG PNG picture
Default PNG

Export.Path: Defines the target path for the export with closing backslash "\". If this option is empty, a file selection
dialog will always be displayed.

Export.File: File name of the first HTML page to be generated. Default: "index.htm".

Export.Quiet: Defines if the export should be executed with user interaction.

Value Meaning
0 Interaction/dialogs allowed
1 No file selection dialog for the target path is displayed (in case Export.Path is

set) and no "Overwrite?" query is made. Also no summary of overlapping
objects that were ignored is displayed.

Default 0

Export.ShowResult: Specifies whether the export result will be displayed automatically. The program that displays
the result will be determined by the registered file extension.

262

https://jquerymobile.com/

The Export Modules Programming Reference

Value Meaning

0 Result will not be displayed automatically.

1 Calls ShellExecute() with Export.File so that normally a web
browser is started.

Default 0

Verbosity.RTF: Defines the way how RTF objects should be exported.

Value Meaning

0 Ignore object

1 As formatted RTF text (converted to HTML)
2 As unformatted text

Default 1

Verbosity.LLXObject. HTMLObj: Configures how the HTML object should be exported.

Value Meaning
0 Ignore object
1 Object as embedded HTML. Only the HTML text between the

<BODY> and </BODY> tags will be exported. Please note the
hint on exporting limitations.
Default 1

JOM.CDN: CDN provider of the CSS and JS files (Content Distribution Network).

Value Meaning

jQuery https://code.jquery.com
Microsoft https://ajax.aspnetcdn.com
Default jQuery

JAM.Title: Title of the generated HTML files. Default: ™.
JOM.ListDatafFilter: Specifies if a search filter bar should be displayed in the result.

Value Meaning

0 No display of the search filter bar

1 Displays a search filter bar and filters the data accordingly
Default 1

JAM.UseDividerLines: Configures the usage of divider lines.

Value Meaning

0 All lines of a table are output as a "normal" data line

1 Header lines, footer lines and group lines are output as special divider lines
with an own style

Default 1

JOM.BreakLines: Configures the wrapping behavior of texts in the result.

Value Meaning
0 Text won't be wrapped but marked with "..." at the end if the width is
insufficient
1 Text is automatically wrapped
Default 1
JOM.BaseTheme: Theme of the data lines. Values: "a", "o", c", d", e, See
view.jguerymobile.com/master/demos/theme-classic.
Default: "d".

263

http://view.jquerymobile.com/master/demos/theme-classic

The Export Modules Digitally Sign Export Results

JOM.HeaderTheme: Theme of the headers (Line with navigation and header). Values: "a", "o", "c", "d", "e". See
view.jguerymobile.com/master/demos/theme-classic.

Default: "a".

JOM.DividerTheme: Theme of the divider lines (see JOM.UseDividerLines). Values: "a", "b", "c", "d", "e". See
view.jguerymobile.com/master/demos/theme-classic.

Default: "b".

7.3 Digitally Sign Export Results

By accessing the products digiSeal® office and digiSeal® server from secrypt GmbH, you can digitally sign PDF,
TXT (if the option "Export.AlllnOneFile" is set) and Multi-TIFF files generated with List & Label. Besides the
software, you need a card reader and a signature card with a certificate stored on it. Details of hard and software
requirements can be found in the signature provider's documentation.

The digiSeal® office package contains the digiSealAPI.dll file or the dsServerAPI.dll file in digiSeal® server, which
must also be delivered together with the redistributable files of List & Label. The DLL's corresponding signature file
(*.signatur) may also be required. Please note that you also will need a software certificate (*.pfx file) when using
digiSeal® server. Detailed information can be obtained directly from secrypt GmbH.

7.3.1 Start Signature

Check the "Digitally sign created files" checkbox in the export target dialog. Please note that this checkbox will only
be available if one of the supported software suites is found on the machine.

After creation of the export file, the signature process is started as usual. Please note that this may change the file
extension of the result file. If the signature process is aborted or erroneous, the export will continue after displaying
the error reason, if applicable.

For legal reasons, a signature in "Quiet" mode is not possible; the PIN always needs to be entered interactively.
This is only possible with the product digiSeal® server 2 as it is a server component requiring a mass signature
card.

7.3.2 Programming Interface
The signature process can be influenced by many parameters.

Export. SignResult: Activates the signature of export files. This option corresponds to the checkbox in the export
target dialog. The value is disregarded if no supported signature software is found on the machine.

Value Meaning

0 No digital signature

1 Exported files will be signed digitally
Default 1

Export. SignResultAvailable: Can be used to suppress the checkbox for digital signature in the export target

dialog.

Value Meaning

0 Hide checkbox
1 Show checkbox
Default 1

Export.SignatureProvider: Allows selection of the software to be used if more than one of the supported products
is installed.

Value Meaning

0 Default, no explicit choice of signature software

1 Sign using secrypt digiSeal® office

2 Sign using OPENLIMIT® SignCubes software (not supported anymore)
3 Sign using esiCAPI® V 1.1 (not supported anymore)

4 Sign using secrypt digiSeal® server 2

Default 0

264

http://view.jquerymobile.com/master/demos/theme-classic
http://view.jquerymobile.com/master/demos/theme-classic

The Export Modules Send Export Results via E-Mail

Export.SignatureProvider.Option: Additional options for the signature provider selected by
Export.SignatureProvider.

Options for the signature provider "digiSeal® server 2":

This option has only one value and contains the connection data for digiSeal® server 2. The single values are
separated with a pipe character each. The following structure applies:

<ServerHost>: <ServerPort> | <File path to the software certificate for identification and authentication
> | <Password for the software certificate>

Example:
localhost:2001|secrypt_Testcertificate D-TRUST test.pfx|test

.NET component:

LL.ExportOptions.Add(L1ExportOption.ExportSignatureProvider, "4");
LL.ExportOptions.Add(L1ExportOption.ExportSignatureProviderOption, "localhost:2001 |
secrypt_Testcertificate D-TRUST test.pfx|test");

C++:

L1XSetParameter(hJob, LL_LLX_EXTENSIONTYPE_EXPORT, _T("PDF"), _T("Export.SignaturProvider "),
_T("4"));

L1XSetParameter(hJob, LL_LLX_EXTENSIONTYPE_EXPORT, _T("PDF"), _T("Export.SignaturProvider.Option"),
_T("localhost:2001|secrypt_Testcertificate D-TRUST test.pfx|test"));

Export.SignatureFormat. Can be used to choose the signature format. The available values depend on the file
type and signature software.

Value Meaning

pk7 Signature in pk7 format (container format that contains the signed file and
signature). Available for Multi-TIFF, TXT and PDF (the latter only for
SignCubes). The resulting file has the extension "pk7".

p7s Signature in p7s format. An additional file *.p7s is created during the export
process. Available for Multi-TIFF, TXT and PDF (the latter only for SignCubes).
If the export result is sent via email, both files are attached.

p7m Signature in p7m format (container format that contains the signed file and
signature). Available for Multi-TIFF, TXT and PDF (the latter only for
SignCubes). The resulting file has the extension "p7m".

PDF PDF signature. Available for PDF and Multi-TIFF (only for digiSeal® office and
B/W-Tiffs). A Multi-TIFF is converted to a PDF and signed with a special
Barcode that allows verifying the signed document even after printing the
PDF.

Default p7s for TXT and Multi-TIFF, PDF for PDF.

7.4 Send Export Results via E-Mail

7.4.1 Overview

The files generated by the export modules can be sent via email automatically. List & Label supports MAPI-capable
email clients, as well as direct SMTP mailing. This functionality is supported by all export modules except for
TTY/MS fax export.

7.4.2 Setting Mail Parameters by Code

Similar to the other export options, the parameters for sending by email can also be set. In the project properties,
the user can already specify some mail parameters such as sender, recipient or subject, which are automatically
used. See the chapter "Project Parameters" for further details. A couple of other options can be set or read using
LIXSetParameter(..."<exporter name>"...) | LIXGetParameter(..."<exporter name>"...). Note that the exporter name
may be left empty to address all export modules.

Export.SendAsMail: Activates sending of export files via email. This option corresponds to the checkbox "Send
exported files by email" for the end user.

265

The Export Modules Send Export Results via E-Mail

Value Meaning

0: No mail will be sent

1: The exported files are sent via the specified provider (see below)
Default: | 0

Export.SendAsMailAvailable: Enables you to hide the respective checkbox in the dialog.

Value Meaning

0: Checkbox will be hidden
1: Checkbox will be available
Default: 1

Export.Mail.Provider: This option can be used to switch the mail provider. All options apart from Simple MAPI
need the CMMX31.DLL.

Value Meaning

SMAPI Simple MAPI

XMAPI Extended MAPI

SMTP SMTP

MSMAPI | Simple MAPI (using the default MAPI client)

GRAPH Microsoft Graph API, e.g. for the Office365 Cloud

Hint: Requires optional modules. Please refer to the file Redist.txt
in your List & Label installation directory.

Default The default value depends on the system's or application's settings
(see below)

If the DLL cannot be found, the mail will be sent using system Simple MAPI (MSMAPI).

The provider is selected by either setting it explicitly using this option or letting the user choose in the
LsMailConfigurationDialog().

List & Label first of all tries to retrieve the application-specific mail settings from the registry. These can be set
using LsMailConfigurationDialog(). If your application wants to support sending report results by email then you
should provide the end-user a menu-item (or similiar) in which's handler you call LsMailConfigurationDialog() to
enable the end-user to specify the mail settings. Note: Please set both export options
Export.Mail.@Configuration.User and Export.Mail.@Configuration.Computer with the help of LIxSetParameter() to
the identical value with which you called LsMailConfigurationDialog() to save the settings for mail sending
individually in the registry.

Export.Mail.To: Recipient for the email.

Export.Mail.CC: CC- Recipient for the email.

Export.Mail. BCC: BCC- Recipient for the email.

Export. Mail.From: Sender of the email. Substitutes the sender's address (combination of
"Export.Mail.SMTP.SenderName" and "Export.Mail. SMTP.SenderAddress") in the mail. However,
"Export.Mail. SMTP.SenderAddress" will still be used for the SMTP protocol.

Export.Mail.ReplyTo: Target for reply email if different to "From" (SMTP only).

Export.Mail.Subject: Mail subject.

Export. Mail.HeaderEntry:Message-ID: Message-ID of the email.

Export.Mail.Body: Mail body text.

Export.Mail.Body:text/plain: Mail body text in plain text format. |dentical to Export.Mail. Bodly.

Export.Mail.Body:text/html: Mail body text in HTML format (SMTP and XMAPI only). Optional, otherwise the mail
will be sent with the text defined in Export.Mail.Body or Export.Mail.Body:text/plain.

Export.Mail.Body:application/RTF: Mail body text in RTF format (XMAPI only).

Export.Mail.SignatureName: The name of an Outlook signature or the path and file name (without file name
extension!) of a signature file. Depending on body text type, the file name extension txt, rtf or htm will be
appended.

Export.Mail. AttachmentList: Additional attachments (besides the export results) as tab-separated list ("\t", ASCII
code 9).

266

The Export Modules Send Export Results via E-Mail

Export.Mail. ShowDialog: Selection for sending the mail without any further user interaction.

Value Meaning

0: The mail is sent directly without any further user interaction (at
least 1 TO recipient must be set). If no recipient is set the dialog
will be shown.

1: The standard "Send mail' dialog is displayed. The values passed
are preset there.
Default: | 0

Export.Mail.Format:. Set the default for the file format selection dialog in the preview. Valid values are: "TIFF",
"MULTITIFF", "LL", "XML", "XFDF", "XPS", "PDF", "JPEG", "PNG", "TTY: <emulation>", "EMF".

Export.Mail.SendResultAs: Allows the result of an HTML export to be sent directly as HTML mail text.

Value Meaning

text/html If SMTP, XMAPI or Microsoft Graph is chosen as mail provider, the
export result is used as HTML content of the mail. All other mail
providers will ignore this option.

empty The HTML result is sent as attachment.
Default Empty

Export.Mail.SignResult:
Value Meaning
0 Email will not be signed.
1 Email will be signed.
Default 0

The SMTP provider offers a set of additional options. These generally do not need to be set explicitly, but should
be set in the LsMailConfigurationDialog().

Export.Mail. SMTP.SocketTimeout: Socket timeout, in milliseconds, default 1000.

Export.Mail. SMTP.LogonName: Login name for the server, default: computer name (usually unimportant).
Export. Mail. SMTP.SecureConnection: Connection security.

Value Meaning

-1 Automatic (use TLS when server supports it)

0 Turn TLS off (even when it is supported by the server)

1 Force SSL (Cancellation when server does not support SSL)
2 Force TLS (Cancellation when server does not support TLS)
Default -1

Export.Mail. SMTP.ServerAddress: SMTP server IP address or URL
Export.Mail. SMTP.ServerPort: SMTP server port, default 25.

Export.Mail. SMTP.ServerUser: SMTP server user name (if necessary)
Export. Mail. SMTP.ServerPassword: SMTP server password (if necessary)
Export.Mail. SMTP.ProxyType: Proxy type (0=none, 1=Socks4, 2=Socksb)
Export.Mail. SMTP.ProxyAddress: Proxy |IP address or URL

Export.Mail. SMTP.ProxyPort: Proxy port, default 1080

Export.Mail. SMTP.ProxyUser: Proxy user name (only Socksb)
Export.Mail. SMTP.ProxyPassword: Proxy password (only Socksb)

Export.Mail. SMTP.POPBeforeSMTP: Some SMTP server need a login via POP before SMTP connection (0=no
POP connection will be established, 1= POP connection will be established)

267

The Export Modules Send Export Results via E-Mail

Export.Mail. SMTP.SenderAddress: Mail sender's address (ex. xyz@abc.def) — is also used for the SMTP
protocol

Export.Mail. SMTP.SenderName: Real sender's name
Export.Mail. SMTP.ReplyTo: Reply to address (optional)

Export.Mail. SMTP.OAuth2.BearerToken: Authentication token if the SMTP server supports authentication via
OAuth2.

Export.Mail.POP3.SocketTimeout: Timeout for socket connection in ms, default: 10000

Export.Mail. POP3.SecureConnection: Connection security.

Value Meaning

-1 Automatic (use TLS when server supports it)

0 Turn TLS off (even when it is supported by the server)

1 Force SSL (Cancellation when server does not support SSL)
2 Force TLS (Cancellation when server does not support TLS)
Default -1

Export. Mail.POP3.SenderDomain: Login domain, default: computer name
Export.Mail. POP3.ServerPort: default: 110

Export.Mail. POP3.ServerAddress: URL/IP address of POP3 server, default: "localhost"
Export.Mail.POP3.ServerUser: user for authentication

Export. Mail.POP3.ServerPassword: password for authentication

Export. Mail. POP3.ProxyAddress: proxy server address
Export.Mail.POP3.ProxyPort: proxy server port, default 1080
Export.Mail.POP3.ProxyUser: proxy server user name

Export.Mail. POP3.ProxyPassword: proxy server password
Export.Mail. XMAPI. ServerUser: profile name for authentication

Export.Mail. XMAPI.SuppressLogonFailure: "0" / "1" show (no) dialog for login error
Export.Mail. XMAPI.DeleteAfterSend: "0" / "1" delete mail after sending
Export.Mail.Graph.AuthType: (Required) Authentication type.

Value Meaning

0 Interactive. Based on all other parameters, a (user) specific token is
generated with user interaction. The user needs appropriate rights to send
emails.

1 Service. Based on Export. Mail. Graph.SecretClientKeyld and

Export.Mail.Graph.SecretClientKeyValue and the other parameters, an
(app)specific token is generated without user interaction. The app requires
appropriate permissions to send emails on behalf of other users.

2 UserPassword. Based on Export.Mail.Graph.UserName and
Export.Mail.Graph.UserPassword and the other parameters, a token is
generated without user interaction. The user needs appropriate rights to

send emails.
3 Token. The externally generated Export.Mail.Graph.BearerToken passed
here is used. The token must contain the rights necessary for sending.
Default 3

Export.Mail.Graph.BearerToken: (Optional) The externally generated BearerToken is required for
Export.Mail.Graph.AuthType 3 (Token).

Export.Mail.Graph.Clientld: (Required) The application ID assigned in Azure AD is required.

Export.Mail.Graph.DelayMessageMaxRetry: (Optional) Number of retries in the event of an internal sending error.

268

The Export Modules Send Export Results via E-Mail

Export.Mail.Graph.DelayMessageSendMS . (Optional) Delay in milliseconds before a new sending attempt. If
DelayMessageMaxRetry is not set, the delay occurs before the first and only sending attempt.

Export.Mail.Graph.RedirectUri: (Optional) A redirect URI configured for the app is required. Default:
http://localhost

Export.Mail.Graph.Scope: (Optional) The access rights to be requested are required. Default:
https://graph.microsoft.com/.default

Export.Mail.Graph.SecretClientKeyld: (Optional) This ID is only required for Export.Mail.Graph.AuthType 1
(Service).

Export.Mail.Graph.SecretClientKeyValue: (Optional) This value matching Export.Mail. Graph.SecretClientKeyld is
only required for Export.Mail. Graph.AuthType 1 (Service).

Export.Mail.Graph. Tenantld: (Required) The directory id assigned to the application is required.

Export.Mail.Graph.UserName: (Required) User name. Required for all authentication types (see
Export.Mail. Graph.AuthType).

Export.Mail.Graph.UserObjectld: (Optional) This |d can be used for Export. Mail. Graph.AuthType O (Interactive) as
an alternative to Export.Mail. Graph.UserName.

Export.Mail.Graph.UserPassword: (Optional) The password to the wuser name is required for
Export.Mail.Graph.AuthType 2 (UserPassword).

Example:

L1XSetParameter(hJob,LL_LLX EXTENSIONTYPE_EXPORT,"","Export.SendAsMail", "1");

This automatically sends the export result as email to the recipient selected via Project > Settings. The globally
selected mail settings will be used. If you want to offer a default to your user, this can be done quite simply:

L1SetDefaultProjectParameter(hJob,"LL.Mail.To", "EMAIL", 0);

This example assumes that your database contains a field called EMAIL. If you want to preset a specific address,
please note that you need to use single quotes, as the passed parameter needs to be evaluated as the formula:

L1SetDefaultProjectParameter(hJob,"LL.Mail.To", "'abc@xyz.de'", 0);

7.4.3 Sending Mail via 64 Bit Application

To be able to send mails over Simple MAPI/XMAPI from a 32 Bit application via a 64 Bit application (e.g. Microsoft
Outlook 64 Bit), use the mail proxy in the form of the two files cmMP31.exe/cxMP31.exe. These require registration
via /regserver with administrator rights. Register both EXE to be able to address 32 Bit applications as well. For
further information, please refer to the file Redist.txt in the List & Label installation directory.

7.4.4 Hints for Selecting the MAPI Server

For sending mail, the default mail application in the system is used. With following registry setting the load strategy
of the MAPI DLL can be controlled.

HKCU\Software\combit\cmbtmx\<Appname>
MAPILoadStrategy [DWORD]

269

The Export Modules

Export Files as ZIP Compressed Archive

Value
0
1

Default

Meaning
A direct LoadLibrary("mapi32.dll").

It will be tried to directly attach to olmapi32.dll or msmapi32.dll if these are
already loaded. If that is not the case, it will be determined and loaded via
GetDefaultMapiHandle() of the MAPISTUB code (see
github.com/stephenegriffin/MAPIStubLibrary). The code corresponds to
the APl GetPrivateMAPI() in MAPISTUB. If this fails, MAPILoadStrategy 0
will be used.

The LoadDefaultMailProvider() method is used. If this fails,
MAPILoadStrategy 1 will be used. It will be tried to use the MAPI-Unicode-
API, meaning that with Microsoft Outlook also Unicode can be used in the
text or subject.

1

2 (Excemption: XMAPI, if the default mail client is Microsoft Outlook)

7.5 Export Files as ZIP Compressed Archive

Should, for example, the results of a picture or HTML export need to be sent by mail, it is often more practical, to
send the export results as a ZIP archive. All export formats support a programming interface for this purpose. Data
compression can be set by the user via a dialog, by selecting the option "ZIP archive (*.zip)" from the list of available

file filters. Alternatively, the output can be controlled by code. The following options are available:

Export.SaveAsZIP: Activates the compression of exported data. If this option is set, the ZIP-Filter will be selected
in the dialog.

Value

0

1
Default

Meaning

Compression is not performed

The export data will be compressed into a ZIP archive
0

Please note, that the user can modify the default settings via the dialog. If this is to be inhibited, set the option
"Export.Quiet" to "1".

Export.SaveAsZIPAvailable: Here you can hide the ZIP archive filter within the file select dialog.

Value

0

1
Default

Meaning

Filter hidden

User selection possible
1

Export.ZIPFile: (Default-)Name of the ZIP file to be created e.g. "export.zip". For the file names in the ZIP archive
the following rules apply:

m if "Export.File" is not assigned, the name of the ZIP archive is used with a corresponding file extension (e.g.
"export.htm")

B if "Export.File" is assigned, this will then be used. If an export format generates one file per page, the

placeholder "%d" can be used for the page number e.g. "Invoice Page %d.bmp" for the bitmap exporter

Export.ZIPPath: Path of the created ZIP files

270

https://github.com/stephenegriffin/MAPIStubLibrary

Miscellaneous Programming Topics Passing NULL Values

8. Miiscellaneous Programming Topics

The following chapter offers various hints for programming with List & Label.

8.1 Passing NULL Values

You can use NULL values in List & Label by passing a special string to the APIs. This means that this field has no
current value, e.g. a delivery date for a shipment that has not yet occurred. Most database drivers may return a
field content of NULL, which you need to pass on to List & Label as "(NULL)", although that string can be altered if
needed. Basically the List & Label components handle database NULL values automatically.

List & Label handles NULL-values according to the SQL-92 specification where possible. An important effect of
that is, that functions and operators, which get NULL-values as parameter or operator generally also return NULL
as the result. An example is the following Designer formula:

Title+" "+Firstname+""+Lastname

If Title is filled with NULL, the result of the formula is also NULL according to the standard. To change this behaviour
please refer to the option LL_OPTION NULL IS NONDESTRUCTIVE.

8.2 Rounding

Please read the following important notes to ensure that you do not run into inconsistencies with the data from
your database: sum variables are not rounded, so if you are not using only integers (i.e. invoices), we suggest that
you use a rounding function, or (better) do not use multiplication or division for sum variables.

8.3 Optimizing Speed

List & Label's standard settings are a good compromise between file sizes and performance. Change the following
settings and mind the following hints to tweak performance for mission critical applications:

e Make sure a job is opened all the time. This prevents the repetitive loading and unloading of DLLs.

e When printing to preview: switch off compression (see LL_OPTION_COMPRESSSTORAGE). Keep in mind
that this might lead to considerably larger preview files, though.

e SetlL OPTION VARSCASESENSITIVE to 1. Note that this will mean that all variables and fields are treated
case sensitive from the moment of this change. This may render existing projects unusable!

e Avoid using RTF- and HTML-text where possible and use the "normal" text object instead.

8.4 Project Parameters

List & Label enables you to set project specific parameters. The user may set these and the application may query
the values at print time.

For example, List & Label uses these parameters itself for the fax and email settings. However, your own application
may also save information to the project file in the same way, too.

8.4.1 Parameter Types

There are different types of parameters that are distinguished by the nFlags parameter passed to
LISetDefaultProjectParameter(). One of each of the three flag alternatives FORMULA/NALUE, PUBLIC/PRIVATE and
GLOBAL/LOCAL needs to be used:

LL PARAMETERFLAG_FORMULA (default)

The parameter is a formula that is evaluated at print time. The evaluated value is returned with
LIPrintGetProjectParameter().

LL_ PARAMETERFLAG_VALUE
The parameter is a fixed value. This value is returned with LIPrintGetProjectParameter().
LL PARAMETERFLAG_PUBLIC (default)

The parameter can be changed within the Designer in the Project>Settings dialog, where the user can
enter a formula or value.

LL PARAMETERFLAG PRIVATE

271

Miscellaneous Programming Topics Project Parameters

The parameter cannot be changed in the Designer.
LL PARAMETERFLAG_GLOBAL (default)

The parameter is added to the print project parameter list and will be saved to the preview file if applicable
(see LIStgsysGetJobOptionStringEx()).

LL PARAMETERFLAG_LOCAL

The parameter is not added to the print project parameter list and will not be saved to the preview file, as
it is only valid for the local user or machine.

If the parameters are passed using L/SetDefaultProjectParameter(), they represent the default values that the user
may change according to his needs (if LL_ PARAMETERFLAG_PUBLIC is set).

If the project is loaded afterwards (L/DefinelLayout(), LIPrint/WithBox|Start()) the passed parameters will be replaced
by those saved to the project file, i.e. they are overwritten. Unchanged parameters are not saved to the project file
and thus remain with their default values. If required, you may set the LL PARAMETERFLAG SAVEDEFAULT to
override this behavior. This is especially useful if the project parameter is queried before printing with
LIGetUserParameter() to offer report parametrization to the user.

Note: you may not pass multiple parameters with the same name but different types!

8.4.2 Querying Parameter Values While Printing
After starting the printout using L/Print/WithBox/Start(), the values for the project parameters can be queried using
LIPrintGetProjectParameter().

You may also change these values using L/PrintSetProjectParameter() or even add further parameters. As the
parameters may be (see above) saved to the preview file and can be extracted from there using
LIStgsysGetJobOptionStringEx(), you may consistently save your own information in this way. In the preview file,
the parameters are saved with the prefix "ProjectParameter" before the actual name.

8.4.3 Predefined Project Parameters

List & Label uses project parameters for sending emails and faxes. The user may change and edit the values. As
List & Label expects the contents to be a formula, it will be necessary to mask them as a string value ("...") whenever
fixed values are used.

Example:

L1PrintSetProjectParameter(hJob, "LL.FAX.RecipNumber", "\"+497531906018\"",0);

LL.FAX.Queue
LL.FAX.RecipNumber

LL.FAX.RecipName
LL.FAX.SenderName

LL.FAX.SenderCompany

LL.FAX.SenderDepartment

LL.FAX.SenderBillingCode

LL.MinPageCount
LL.ProjectDescription
LL.IssueCount
LL.PageCondition
LL.PrintJobLCID

LOCAL, PRIVATE

GLOBAL, PUBLIC
[LL_OPTIONSTR _FAX RECIPNUMBER]

GLOBAL, PUBLIC
[LL_OPTIONSTR_FAX RECIPNAME]

GLOBAL, PRIVATE
[LL_OPTIONSTR _FAX SENDERNAME]

GLOBAL, PRIVATE
[LL_OPTIONSTR_FAX SENDERCOMPANY]

GLOBAL, PRIVATE
[LL_OPTIONSTR_FAX SENDERDEPT]

GLOBAL, PRIVATE
[LL_OPTIONSTR_FAX SENDERBILLINGCODE]

GLOBAL, FORMULA, PUBLIC
GLOBAL, VALUE, PUBLIC

GLOBAL, FORMULA, PUBLIC
GLOBAL, FORMULA, PUBLIC
GLOBAL, FORMULA, PUBLIC

272

Miscellaneous Programming Topics Project Parameters

Further information on the project parameters can be found in the Designer manual.

Analog to the LL.FAX parameters LL.MAIL parameters exists, see chapter "Setting Mail Parameters by Code" for
further information.

Parameters that are not defined prior to L/DefinelLayout() or were defined with the PRIVATE-Flag are not editable.

For example, the application could pass the value for "LL.Mail.To" using an email field (here: "EMAIL") from a
database:

L1SetDefaultProjectParameter(hJob,"LL.MAIL.To", "EMAIL",0);

The user may then add a "FIRSTNAME" and "NAME" field in order to enhance the address:
FIRSTNAME + "" + NAME + " <"+ EMAIL + ">"

The preview control automatically adopts the values of LL.FAX.* and LL.MAIL.*. In addition, the values are passed
to the export modules — these also use the user-defined contents.

Please note a change in the behavior of the export modules up to version List & Label 9: if the user enters an email
address in the settings dialog, the export result will always be sent to this address, regardless of the settings made
using LiIXSetParameter(). We recommend setting all mail settings using the project parameter API. Unchanged
projects should behave as before.

8.4.4 Automatic Storage of Form Data

If you are using the form elements, it is possible to perform automatic storage after completion of the preview
with the project parameters. Besides the automatic storage of form data these parameters can also be used to
define the file names for sending e-mail out of the preview and for defining the default settings for saving out of
the preview. For this purpose, you can use the following project parameters:

SaveAs.Format Desired export format, e.g. "XML"

See LIStgsysConvert for a list of the supported
formats. Further information can be found in
chapter "The Export Modules".

SaveAs.Filename Output file name, e.g. "test.xml"

SaveAs.ShowDialog Allows the save dialog to be enabled ("1") or
disabled ("0")

SaveAs.NoSaveQuery Disables the request as to whether the file should

be saved after completion or not.

Note: SaveAs.NoSaveQuery overwrites the value
of SaveAs.ShowDialog, i.e. if no dialog should be
shown, but the save query should be, the dialog

will be shown anyway and vice versa.

Example:

L1PrintSetProjectParameter(hJob, “SaveAs.Format", "XML",
LL_PARAMETERFLAG_VALUE);

L1PrintSetProjectParameter(hJob, “SaveAs.Filename", "test.xml",
LL_PARAMETERFLAG_VALUE);

L1PrintSetProjectParameter(hJob, “SaveAs.ShowDialog", "0",
LL_PARAMETERFLAG_VALUE);

L1PrintSetProjectParameter(hJob, “"SaveAs.NoSaveQuery","1",
LL_PARAMETERFLAG_VALUE);

273

Miscellaneous Programming Topics Web Reporting

8.5 Web Reporting

Further information on using List & Label with ASP.NET can be found under "Usage in Web Applications" in chapter
"Programming With .NET". Of course, you can also use other programming languages for web reporting.

In general, the following requirements apply:

e The server has to be a Windows system, List & Label can only be run on Windows platforms. This restriction of
course does not apply to the clients.

e |f no printer driver is installed for the user account under which the web application runs, the
LL OPTION_PRINTERLESS option or (for .NET and VCL) the Printerless property of the respective component
must be set to "1" or "true". Then a virtual device will be used for rendering. Note that this may have a minimal
impact on the positioning of the output. In addition, it must be ensured that the user account used can load
the List & Label DLLs, i.e. that rights have been assigned for the path of the DLLs.

e The actual web application carries out a silent export without user interaction (see chapter "Export Without User
Interaction") and directs the client to the export file e.g. by a redirect.

The following image visualizes the principle:

Server

Client

EE5,

Application

User can view
result in browser

8.6 Hints for Usage in Multiple Threads (Multithreading)

List & Label can be used from multiple threads. This enables the distribution of large print jobs on multiple different
processors / cores. Internally, this is used for the designer preview or drill down reporting.

If you plan to use List & Label in a multithreaded environment, keep the following issues in mind:

o Make sure that each List & Label job (resp. a component instance) is only used within a single thread, i.e.
the creation, usage and destruction of the job/component needs to be done from the same thread. If you
want to use multiple printing threads, each of these threads needs to open and close its own job.
Background: Windows GDI resources like window handles or printer device contexts cannot be used
across different threads.

e Make sure to open a job/create a component instance in your application before starting the first print
thread and do not close this job before all threads are terminated. Typically, this will be done in your
application's start-up and shutdown code. Background: the first job creates a couple of helper objects
that need to be destroyed in the same job. Also, this can increase the performance remarkably as it avoids
steady loading and unloading of DLLs.

e Threads that open the designer need to use the Single Threaded Apartment (STA) concurrency model.
This means you cannot use .NET worker threads from the thread pool for this task, as they are initialized
to use the Multi Threaded Apartment (MTA) concurrency model. Background: List & Label needs to call
Olelnitialize() for drag & drop support within the designer, which requires the current apartment to be STA
to succeed.

274

Miscellaneous Programming Topics Scripting Support

8.7 Scripting Support

8.7.1 Introduction

Scripting in List & Label provides you with a powerful extension that allows access to variables, fields and more.
With the help of scripts, you can address them and thus realize many additional functions comfortably in a language
of your choice.

Note: A script is a sequence of commands that are processed sequentially during execution. The commands are
taken from the "vocabulary" of a particular script language. This command set determines the possibilities offered
by the language and how a script must be structured.

Scripts are usually not too extensive and lead to considerable performance with just a few commands. An average
script contains maybe 20 to 40 lines of commands. Not least for these reasons script languages are usually very
easy to learn.

Although superficially very similar, there are a number of crucial differences between a script and an executable
program.

For example, scripts are not executable by themselves, but always need an environment in which they are
executed. These so-called hosts are responsible for managing the scripts and usually extend the possibilities of
the respective language in the form of additional objects. In this case List & Label itself is the host. By means of
the provided frameworks, the user has a powerful interface to extend the functionality of the formula editor. Since
List & Label scripts are usually run through frequently within the print loop, they must not contain any GUI elements.
For the same reason, they should be executable within a manageable time frame.

Which Script Languages are Supported?
In principle, theoretically all script languages of the Windows Scripting Host are supported. However, the most
common are VBScript and JScript, which are offered directly by the manufacturer Microsoft. But there are also

other implementations such as Python. The selection of the language to be used is done by a parameter string
when calling the script functions.

Note: VBScript and JScript are usually already installed on your system. If not or if other languages are to be used,
they must be obtained from the respective manufacturer and installed on the system according to their
specifications.

In addition to the classic scripting languages of the Windows Scripting Host, C# is also supported as scripting
language.

You can utilize all functions of the .NET Framework 4.8 (backwards compatible up to .NET Framework 4.0) with C#
scripts; therefore, there needs to be at least this version or a higher version of the .NET Framework installed to
execute said scripts.

Since C# scripts must be compiled before use and this may take longer than executing the script itself, the 30
most recently compiled scripts are cached for re-execution. The corresponding files are located in the folder
"%temp%\combitCSharpScriptCachelL31\". There you will find the file "combitCSharpScriptCache.cache" which
contains information about the stored scripts and for each script a folder with a name in the form
'combitCSharpScript_[GUID]" (e.g. "combitCSharpScript €9527e037aa149f3ba79bd408a8232db"). This folder
contains all .dll files used by the script, debug information and the script itself (also in form of a .dll file).

How and Where can Scripts be Integrated?

The integration of scripts is easily possible via the formula editor integrated in List & Label. The actual script code
can either be a direct embedded part of a formula or alternatively external code can be referenced using the
LoadFile$() designer function. Furthermore, additional external code can be included within the script code using
#include statements. Especially for larger scripts the use of external text files is the better choice, because they
allow an easy reusability elsewhere.

The following designer functions are provided:

Script$: Returns the result of a script as a string

ScriptBool: Returns the result of a script as Boolean

ScriptDate: Returns the result of a script as date

ScriptVal: Returns the result of a script as a number

For more information about the Designer functions, see the Designer Manual.

Support for Scripting Functionalities

The possibilities of the scripting technology are very extensive and their description is therefore certainly material
for your own book. Of course, we would like to help you with your questions and wishes within the scope of our
support to enable you to use our product in an optimal way. However, we ask for your understanding that we can
only answer questions about the object model itself, but not about models of other products or the script languages

275

Miscellaneous Programming Topics Scripting Support

themselves. A description of the possible script languages can be found in the book program of many larger
specialist publishers or online.

8.7.2 Preprocessor and Options

Enable Scripting Support

By default, the script engine is not active for security reasons, because it offers the user the possibility to call
system functions via the script language in the context of the current application user. For this reason, the script
engine must first be activated. There are three options available for this purpose.

Enable general scripting support (default: False).
LISetOption(hJob, LL_OPTION_SCRIPTENGINE_ENABLED, true);

Optionally a user-defined timeout can be set for the maximum runtime of a script (default: 10000 ms). A script with
longer runtime will be aborted by the environment. With C# scripting, caution is advised here with too low a
timeout, since any compile time that may occur counts towards the execution time.

LISetOption(hJob, LL_OPTION_SCRIPTENGINE_TIMEOUTMS, 15000);

Optionally, the formula editor can be set so that the printout is executed directly in real time each time a key is
pressed. However, since this can put a lot of load on the system, depending on the script language, the default
setting is False.

LISetOption{hJob, LL_OPTION_SCRIPTENGINE_AUTOEXECUTE, true);

General for all Languages

All statements for the preprocessor such as pragmas, options, includes must always be placed on a separate line
so that they can be handled correctly. Leading spaces and tabs are ignored. It is however possible to comment
them out ad-hoc.

Single-line comments are initiated for all preprocessor instructions with // - analogous to C/C++/C#. Multiline
comment blocks are not supported in the preprocessor.

Since formula parameters within a List & Label expression are marked with either ' or ", their use within a script is
restricted if the source code is embedded directly into the formula. Then only the other character within the source
code, which was not used to introduce the formula parameter, can be used for masking in the source code.
However, if the source code is loaded from an external file instead using the LoadFile$() designer function, this
restriction does not apply.

Selection of the Script Language
Using the command
<!--#language="[script language]"-->

the script language can also be set explicitly within the code. The usage is optional. If a specification is available,
however, it is only checked and warned if different languages are mixed. The actual selection of the language is
done via the corresponding parameter at the script call. Possible values are the identifiers needed for the Script$()
designer function, such as "CSharpScript", "VBScript" or "JScript".

Nesting of Scripts

Frequently used functions can be stored and used centrally. This way changes affect all scripts based on them.
For this purpose, the integration of scripts is supported via a special instruction:

<!--#include file="c:\scripts\include.vbs"-->

The statement is replaced by the complete contents of the specified file. #include statements like all other
pragmas and options must always be placed on a separate line to be handled correctly by the preprocessor.
Note: All scripts included in this way must use the same script language as the main script itself. A mixture of
several languages is not possible and leads to syntax errors.

If the scripts are located below the program directory of the application/EXE, the %APPDIR% variable can be used
instead of a fixed directory specification:

<!--#tinclude file="%APPDIR%\include.vbs"-->

276

Miscellaneous Programming Topics Scripting Support

Special for use With C#

Requirements

To run C# scripts, at least .NET Framework 4.0 or higher must be installed on the computer. Additionally the files
combit.CSharpScript31.Engine.x86.dll and combit.CSharpScript31.Interface.x86.dll or the corresponding 64Bit
versions must be delivered with your application and must be located in the search path of the List & Label main
DLL.

Logging
To enable logging of a script, the following #pragma statement must be included:
<!--#pragma forcelogging-->

The log output is written to the file "%temp%\combitCSharpScript.log". Logging can be time consuming and should
therefore not be activated by default.
Debug Mode

If a script contains the statement
<!--#tpragma debugmode-->

at the beginning of the script a debugger is started (if one is installed on your system), which can be used to check
the script step by step for errors. On the other hand, error texts triggered by exceptions contain more information
and possibly the line numbers of the source code.

Adding References

Using the command
<!--#include ref="[file path]"-->

external references/components, such as the Windows Forms library from Microsoft (System.Windows.Forms.dll),
can be added to a script.

If only the file name without path is specified, the system tries to load the reference from the "Global Assembly
Cache" (GAC). If a complete path is specified, a copy of the file is created in a temporary folder and loaded from
there.

Note: This command must be executed in the script according to the preprocessor directives that apply to all script
languages.

Adding Namespaces

Using the command
<!--#include using="[namespace]"-->

can be added to the script using statements. This has the advantage that namespace names do not always have
to be specified explicitly.

Instead of calling "System.Collections.Generic.List<String> obj;" for each individual list, the call after adding
'System.Collections.Generic" as a using statement would only be "List<String> obj;".

Note: This command must be executed in the script according to the preprocessor directives that apply to all script
languages.

8.7.3 Quick Reference and Examples

A script is called using the designer function Script$(<language>, <code>, < opt:function>,<opt:timeout>) in
the project file within the formula editor and returns a string as result. Alternative forms like ScriptVal, ScriptBool
and ScriptDate work analogously except for the return type. Details can be found in the Designer Manual.

Script$
Interprets the result of a script as a string.
Parameter:
String Determines the script language to be used. Primarily CSharpScript as well as VBScript
and JScript are supported
String Script code to be executed
String (optional) Defines the result of the return under VBScript, it contains either the name
of the function/method to be executed or a variable name. For C# this parameter is
ignored and values are returned directly by assigning the variable WScript.Result
Number (optional) Timeout in ms

277

Miscellaneous Programming Topics Scripting Support

Return value:
String
Example:
Examples for C#:
S;ript$(‘CSharpScript',' WScript.Result= "Language:

Script$('CSharpScript', LoadFile$(ProjectPath$(false) + "Script.cs"))

+ Report.Variable("LL.CurrentLanguage");

For further reference, the extended example of the sample application includes the project "Order list with
scripting.srt".

Examples for VBScript:
Script$('VBScript',' RetVal= "Language: " + Report.Variable("LL.CurrentLanguage") ', 'Retval')

Script$('VBScript', LoadFile$(ProjectPath$(false) + "Script.vbs"), RetVal)

General Object Model
Within the script, provided variables and methods of the List & Label host can be accessed.

Report Object

The most important methods for accessing the tables and variable contents, temporary variables and the evaluation
of formulas are provided by the report object.

When accessing variables and fields, always pay attention to the current context. Only those variables and fields
that are actually registered in the current context can be accessed.

Report.Variable
Access a List & Label variable and return its value, read only.
Parameter:
String Determines the name of the variable to be queried
Return value:
String
Example:
Script$('CSharpScript', 'Report.Variable("LL.CurrentContainer");")

Report.Field
Access a List & Label field and return its value, read only.
Parameter:
String Defines the name of the field to be queried
Return value:
String
Example:
Script$('CSharpScript', 'Report.Field("Orders.CustomerID");")

Report.Eval
Evaluates a List & Label expression and returns its value, read only.
Parameter:
String Determines the expression to evaluate
Return value:
String
Example:
Script$('CSharpScript', 'Report.Eval("RGBStr$(12345);")

The SetVar/GetVar designer functions can be used to indirectly pass intermediate results from one script to another
during printing. However, the order of the calls (columns) is of course decisive here. See also the SetVar/GetVar
documentation in the Designer Manual.

Example calls C#:
var start = Report.GetVar("ResultTmp"); // Get temporary value

278

Miscellaneous Programming Topics Scripting Support

var sl = Report.Variable("LL.CurrentContainer");

var s2 = Report.Field("Orders.CustomerID");

var s3 = sl + s2 + Report.Eval("RGBStr$(12345)");
Report.SetVar("ResultTmp", s3, false); // Set temporary value

Example calls VBScript:

start = Report.GetVar("ResultTmp")

sl = Report.Variable("LL.CurrentContainer")
s2 = Report.Field("Orders.CustomerID")

s3 = s1 + s2 + Report.Eval("RGBStr$(54321)")
call Report.SetVar("ResultTmp", s3, false)

Report.SetVar
Sets a virtual List & Label variable.

Parameter:
String Determines the name of the virtual variable to be set
All Determines the value to be stored
Boolean Determines whether the function should also return the value or whether the result

should be an empty string. Default setting: Return (True)
Return value:
All

Example:
Script$('CSharpScript', 'Report.SetVar("ResultTmp", "MyValue", false);')

Report.GetVar
Returns the value of a virtual variable.

Parameter:
String Determines the name of the virtual variable to be queried
Return value:
All
Example:
Script$('CSharpScript', 'Report.GetVar("ResultTmp");")
WScript Object
The following constants are available for direct access in the script:
Name Meaning
WScript.Name Contains name of the application
WScript.Path Contains path to the application
WScript.Version Contains internal version number

WScript.FullName Contains full name of the application

Example:

var MyFilePath= WScript.Path + "MyFile.txt";
WScript.Result = MyFilePath; // set the return value for a C# script

The variable WScript.Result is of special importance for a C# script, since it always serves as return value. In
contrast to VBScript, for example, this return value is fixed and should be assigned at least once within the script.
The last assignment defines the result.

In other script languages this variable is not defined and gives a syntax error when using it.

279

Error Codes and Warnings General Error Codes

9. Error Codes and Warnings

Below are the possible constants for errors and warnings. The values in brackets represent the decimal
specifications that also appear in debug output.

9.1 General Error Codes

Note: The constants all begin with LL ERR , i.e. the entry BAD JOBHANDLE corresponds to the constant
LL ERR BAD JOBHANDLE.

Value Meaning

BAD JOBHANDLE (-1) A function is called with a job handle not
generated with LIJobOpen() or the job was
closed.

TASK ACTIVE (-2) Only one Designer window can be open for each

application; you have tried to open a second
window (only if hWnd in LIDefinelLayout() is
NULL).

BAD OBJECTTYPE (-3) An invalid type was passed to a function which
requires the type of object as a parameter.
Valid types: LL_ PROJECT LABEL, LL PROJECT -
LIST, LL PROJECT CARD.

PRINTING JOB (-4) A print function was called, although no print job
had been started.

NO_BOX (-5) LIPrintSetBoxText() was called and the print job
was not opened with L/PrintWithBoxStart{).

ALREADY PRINTING (-6) The current operation cannot be performed
while a print job is open.

NOT _YET PRINTING (-7) LIPrint/G | S]etOption[String](), LIPrintResetProject-
State(). The print job has not started yet.

NO_PROJECT (-10) LIPrint/WithBox/Start(): There is no object with the
given object name. |dentical to LL ERR -
NO_OBJECT

NO_PRINTER (-11) LIPrint/WithBox/Start(): Printer job could not be

started as no printer device could be opened.
List & Label requires a printer driver to be
installed or the option LL_OPTION _PRINTERLESS
to be set.

PRINTING (-12) An error occurred during print. Most frequent
cause: print spooler is full. Other reasons: no
sufficient disk space, paper jam, general printer
failure.

EXPORTING (-13) An error occurred during print (e.g. no access
rights to the destination path, export file already
existing and write-protected,...)

NEEDS VB (-14) This DLL version requires Visual Basic.

BAD PRINTER (-15) LIPrintOptionsDialogTitle(): No printer available.
NO_PREVIEWMODE (-16) Preview functions: No preview mode is set.
NO_PREVIEWFILES (-17) LIPreviewDisplay(): No preview files found.
PARAMETER (-18) NULL pointer as a parameter is not allowed,

other parameter errors are also possible. Please
use the debug mode to determine the error.

BAD _EXPRESSION (-19) New expression mode: an expression in L/IExpr-
Evaluate() could not be interpreted.

BAD EXPRMODE (-20) Unknown expression mode in L/SetOption().

CFGNOTFOUND (-22) LIPrint/WithBox/Start(): Project file not found.

280

Error Codes and Warnings

General Error Codes

EXPRESSION (-23)

CFGBADFILE (-24)
BADOBJNAME (-25)
UNKNOWNOBJECT (-27)
NO_TABLEOBJECT (-28)

NO_OBJECT (-29)

NO_TEXTOBJECT (-30)

UNKNOWN (-31)

BAD MODE (-32)

CFGBADMODE (-33)

ONLYWITHONETABLE (-34)

UNKNOWNVARIABLE (-35)
UNKNOWNEFIELD (-36)
UNKNOWNSORTORDER (-37)
NOPRINTERCFG (-38)
SAVEPRINTERCFG (-39)
NOVALIDPAGES (-41)
NOTINHOSTPRINTERMODE (-42)
NOTFINISHED (-43)

BUFFERTOOSMALL (-44)

BADCODEPAGE (-45)

CANNOTCREATETEMPFILE (-46)
NODESTINATION (-47)

NOCHART (-48)

LIPrint/WithBox/Start(),LIDefineLayout(). One of
the expressions used has an error. When
starting the Designer, these errors will be
displayed interactively. When printing, the errors
are logged to Debwin. When working with
LIExprEval() use LIExprError() to find the error.
LIPrint/WithBox/Start():Project file has the wrong
format or is defective.

LIPrintEnableObject(): The object name is not
correct.

LIPrintEnableObject(): No object exists with this
object name.

LIPrint/WithBox]Start(): No table available in the
list mode.

LIPrint/WithBox/Start(): The project has no
objects, and empty pages can be printed
another way!

LIPrintGetTextCharsPrinted(): No text object in
this project.

LIPrintisVariableUsed(), LIPrintlsFieldUsed(: The
given variable does not exist.
LIGetUsedldentifiers(): The project contains no
information about variables and fields used
because it has not yet been saved with List &
Label 11 or newer.

Field functions were used, although the project
is not a list project.

LIPrint/WithBox]Start(), LIDefinelLayout(): The
expression mode of the project file is the new
mode, but the old mode is set (see
LISetOption()).

This error code can only be returned if - in the
list mode - the OneTable mode (LL_OPTION _
ONLYONETABLE) is chosen, but more than one
table is present when loading the project with
LIPrint/WithBox/Start()(See LISetOption()).

The variable given with LIGetVariableType() or
LIGetVariable Contents() has not been defined.
The field given with LIGetFieldType() or
LIGetFieldContents() has not been defined.

The sorting order given by the ID for the
grouping functions has not been defined.
LIPrintCopyPrinterConfiguration(): File not found
or wrong format.
LIPrintCopyPrinterConfiguration(): File write error
(network rights allow writing/creation, disk full?).
Storage file contains no valid pages.

This command cannot be called in
HOSTPRINTER mode (L/SetPrinterinPrinterFile(),
LIPrintCopyPrinterConfiguration()).

One or more objects have not been completely
printed.

LI[G | S]etOptionString(),LIPrint[G | SJetOptionString
()., ... A buffer passed to List & Label is not large
enough for the data that should be stored in it.
The data is not complete.
LL_OPTION_CODEPAGE: The code page is
invalid (NLS not installed).

A temporary file could not be created.

List & Label has no valid print medium (see

LL OPTIONSTRING EXPORTS ALLOWED).
LIPrintDeclareChartRow(): No chart object exists
in the project.

281

Error Codes and Warnings General Warnings

NO_WEBSERVER LICENSE Only in server/web server applications. The use

(-51) in server/web server applications is only possible
from the Enterprise Edition.

INVALIDDATE (-52) LISystemTimeFromLocaleString(). invalid date
format has been used.

DRAWINGNOTFOUND (-53) A required drawing file could not be found, see
also LL_ OPTION _ERR ON FILENOTFOUND.

NOUSERINTERACTION A call would require a user interaction; however

(-54) the application is running on a web server.

BADDATABASESTRUCTURE (-55) ' The database structure at design time and
runtime does not match.

UNKNOWNPROPERTY (-56) The property is not supported by the object.

INVALIDOPERATION (-57) A DOM function could not be executed (e.g. an
object could not be created).

PROPERTY ALREADY DEFINED (- The property already exists (DOM).

58)

CFGFOUND (-59) The selected project already exists or is write
protected.

SAVECFG (-60) Error saving the project file.

ACCESS DENIED (-65) An existing object cannot be accessed in the
repository.

IDLEITERATION _DETECTED (-66) The number of print attempts is greater than the
value of the
LL _OPTION_IDLEITERATIONCHECK MAX ITERAT
IONS option.

USER ABORTED (-99) The user aborted the print.

BAD DLLS (-100) The DLLs required by List & Label are not on the
required level.

NO_LANG DLL (-101) The required language DLL was not found and a
CMLL3T1@@.LNG is not available.

NO_MEMORY (-102) Not enough free memory.

EXCEPTION (-104) An unhandled Exception happened inside a List
& Label call. List & Label might be unstable.

LICENSEVIOLATION (-105) Returned if the action (L/Definelayout()) is not

allowed with the current standard license, or if
the program passes wrong licensing information
in LL_OPTIONSTR LICENSEINFO.

9.2 General Warnings

Note: The constants all begin with LL WRN_, i.e. the entry TABLECHANGE corresponds to the constant
LL WRN_TABLECHANGE.

Value Meaning

TABLECHANGE (-996) The table name is changed in a hierarchical
layout. See also chapter "Printing Relational
Data".

PRINTFINISHED (-997) Return value of LIRTFDisplay(): no more data to
print.

REPEAT DATA (-998) This is just a hint: present data record did not fit

onto the page. This return value is required to
remind the programmer that he can, for
example, bring the number of pages up to date.
The record pointer may not be moved.

9.3 Additional Error Codes of the Storage API

Note: The constants all begin with LL ERR_STG , i.e. the entry NOSTORAGE corresponds to the constant
LL ERR_STG_NOSTORAGE.

282

Error Codes and Warnings

Additional Warnings of the Storage API

Value
NOSTORAGE (-1000)
BADVERSION (-1001)

READ (-1002)
WRITE (-1003)
UNKNOWNSYSTEM (-1004)

BADHANDLE (-1005)
ENDOFLIST (-1006)
BADJOB (-1007)
ACCESSDENIED (-1008)

BADSTORAGE (-1009)
CANNOTGETMETAFILE (-1010)

OUTOFMEMORY (-1011)
SEND_FAILED (-1012)

DOWNLOAD_PENDING (-1013)
DOWNLOAD _FAILED (-1014)

WRITE FAILED (-1015)
UNEXPECTED (-1016)

CANNOTCREATEFILE (-1017)
INET_ERROR (-1019)

SEND_FAILED NEED OAUTH2 TOKE

N (-1021)

Meaning

The file is not a List & Label preview file.

The version number of the preview file is
incompatible.

Error reading preview file.

Error writing preview file.

Unknown preview file format for the storage
system.

Bad parameter (invalid metafile handle).
LIStgsysGetFilename(): page not found.
LIStgsysxxx(): job not found.

Storage has been opened with ReadOnly flag
and cannot permit write access.

Internal error in preview file, or empty file.
LIStgsysDrawPage(): metafile could not be
created (possibly defective preview file).

Not enough memory for current operation.
Error whild sending mail. Further information
can be found in the debug logfile.

An action could not be compled because the
file to view could not be loaded completely.
An action could not be compled because the
attempt to load the file failed.

Write or access error when saving a file.
Unexpected error. Further information will be
displayed.

Write or access error when saving a file.
Unexpected error. Further information will be
displayed.

Returned if the SMTP server provides
OAuth2 authentication, no other login works
and no token was passed via

"Export.Mail. SMTP.OAuth2.BearerToken".

9.4 Additional Warnings of the Storage API

Note: The constants all begin with LL_WRN _STG _, i.e. the entry UNFAXED PAGES corresponds to the constant

LL_WRN_STG_UNFAXED PAGES.

Value
UNFAXED PAGES
(-1100)

Meaning

LIStgsysPrint() and LIStgsysStoragePrint() (only
while printing to MS FAX): some pages did
not include a phone number and could not
be faxed.

283

Debug Tool Debwin

Additional Warnings of the Storage API

10. Debug Tool Debwin

Debwin is a tool for manifold debug functions.

If the debug mode is switched on with LiSetDebug(), List & Label outputs status information in the Debwin window.
To get all available information we suggest to start Debwin before starting the application. As soon as your
application is started, it will start sending debug messages to Debwin.

Besides the error codes (see chapter "Error Codes"), you often get additional information that helps to trace the
reasons for unexpected program behavior. A typical debug output looks like this:

- O
Logs View Options Help
o
S W uto-Scroll Undo Filter || Saveleg = E2 Copyleg ¥ | AN Previous lssue W Mext Issue | Search: -
Logger Thread Date/Time Message -
(i] LL.APT 4868] 16:52:14.735 <Llsetoption() -» e (eeeesese)
0 LL.APT 2868 16:52:14.735 >»L1setoptionstring(z,&3, "COMBITBLUE')
(i} LL.APT 4868 - 16:52:14.735 <Llsetoptionstring() -> e (eeseeeese)
0 LL.API 4868 - - 16:52:14.735 >»L1setoption(2,192,exesesslac)
0 LL.APT 2868 B 16:52:14.735 <Llsetoption() -» @ (eeeesese)
0 LL.APT 4868 - 16:52:14.735 »Llsetoption(2,1e2,exeeessesl)
0 LL.API 4868 F 16:52:14.735 «<Llsetoption() -» @ (eoeeesss)
(i} LL.APT 4968 = 16:52:14,735 »L1setoption(2,171,2xeeeeseel)
0 LL.APT 2868 = - 16:52:14.735 <Llsetoption() -» & (eeeesese)
[i] LL.APT 4868 B 16:52:14.735 sLlsetoption(2,276,exeeessesl)
0 LL.API 4868 (B 16:52:14.735 «<Llsetoption() -» @ (eoeessss)
0 :52:14.735 >»L1setFileExtensions(2,2,"lsr',"'11p", "11v"}
(i) 735 <LlsetFileExtensions() -> @ (eeeeesee)
sL1selectFilenlpTitleEx(2, 8X@1090738, 'Designer" , o)
(i) LL.API 2068 5 <L15electFileDlgTitleEx() -> @ (@@eeaen) v
=9 - . B PR . - . . - -
L4 >
Total Messages: 5.481
Message: Word-Wrap E@
>L15electFileD1gTitleEx(2,8X01D908738, 'Designer’ ,8x00000002,0X15DBC6D0, 16384, 00000000)

X

)14

You can see the called module (CMLL31), timing information, the current thread ID, the called function including
all parameters and — in the following line — the return value of the call. A full debug log, which is also often requested
by our support team, contains many such output lines.

Further information can be found in our knowledgebase article Troubleshooting Guidance.

We provide support for this tool only for the features that are directly related to the debug output.

284

https://forum.combit.net/t/troubleshooting-guidance/5082

Redistribution: Shipping the Application System Requirements

11. Redistribution: Shipping the Application

The List & Label DLL and its modules can be installed under Windows for side-by-side use in your application.

The Redistribution Assistant is available for putting together the redistribution files. In just a few steps, you can put
together all the files required for your application and copy them directly to the correct target directory, create a
ZIP archive or copy the file paths for further batch processing. The Redistribution Assistant can be found in the
"Miscellaneous" directory of your List & Label installation.

You can also find an overview of the files required for distribution in the file "Redist.txt" in the "Documentation”
directory of your List & Label installation.

Important: Before redistributing your application, make sure to set your personal license key in all instances of the
"ListLabel" object using LL_OPTIONSTR_LICENSINGINFO in order to avoid error messages from the redistributed
application. VCL, OCX and .NET component offer a corresponding property "Licensinglnfo" for this purpose.

The necessary information can be found in the file "PersonallLicense.txt" in the root directory of your List & Label
installation. If more than one developer works on the project, any of the license information keys will do.

Note: In the trial version, it is not necessary to set the licensing key or an empty string can be used.

11.1 System Requirements
Please refer to "System Requirements”, as the redistribution modules of List & Label have the same requirements.

11.2 The Standalone Viewer Application

11.2.1 Overview
LLVIEW31.EXE is a standalone application for viewing and printing the List & Label preview files.

Once the viewer is registered, the file extension ".II" is linked to this viewer, so whenever a user double-clicks on
files with this extension, the viewer is started.

11.2.2 Command Line Parameters
LLVIEW31 <file name>

Loads the file.

No URL can be given here.

LLVIEW31 /p <file name>
Prints the file (with a printer dialog).
LLVIEW31 /pt <file name> <printer name>
Prints the file using the given printer. If the printer name contains spaces, enclose it in quotation marks.

11.2.3 Registration

Your setup program should call the viewer once with the "/regserver' option in order to register it with the file
extension "LL".

Unregister using "/unregserver".

11.2.4 Necessary Files

LLVIEW31.EXE needs CMLL31.DLL, CMDW31.DLL, CMCT31.DLL, CMBR31.DLL, CMLS31.DLL and CMUT31.DLL.
It also requires at least one language resource file (e.g. CMLL3101.LNG). Depending on the direct export
functionality required, you also need:

e CMLL31XL.DLL if direct PDF export functionality should be supported

11.3 List & Label Files

List & Label saves the project definitions in single files. In addition to the basic definition, some special settings
such as target printer, printer configuration etc., which can be made in the Designer, are saved in a special, so-
called "P-file". A small sketch of the form, which is displayed in the file open dialog, is saved to another extra file
(the so-called "V-file").

285

Redistribution: Shipping the Application List & Label Files

File extension: Form Printer- Sketch for dialog
Definition

Label project bl Ibp lov

File card project .crd .crp .crv

List project st Isp Isv

These file extensions are only default values and can be changed using L/SetFileExtensions() or LISetOptionString().
The crucial file is the form definition file.
The "V-file" can be created at any time using L/CreateSketch().

In the printer configuration file ("P-file") are all export specific settings stored as well as the printer specific settings.
Usually this file is created by the end user — you should not redistribute it with your application as the user typically
will not have your printer available.

If the "P-file" cannot be found, List & Label automatically chooses the Windows default printer and - if the Designer
is used - generates a P-file for it. The path where the P-file is searched for or generated can be specified with
LISetPrinterDefaultsDir(), which may be relevant for network applications. The logical sequence of choosing the
printer is shown in the following graph:

P-file available?

Yes

Printer from

P-file available No

Yes No

Choose printer Choose Windows

from P-file default printer

When printing to preview, List & Label generates a file which contains all printed pages as graphics. This file has
the fixed extension .LL and may be viewed at any time with the stand-alone application LLVIEW. The path where
the LL-file is created may be specified with L/PreviewSetlempPath().

Printing to Export will create files in a directory that can be defined by the host application and/or the user. Please
refer to the export module's documentation for further details. A list of files created can be queried using
LL OPTIONSTR_EXPORTFILELIST after the print has been finished.

Whenever a project file is saved, a backup file is created. The name of the backup file's extension consists of a ~
and the project's extension (eg. "~Ist" for the default list project extension).

If the target does not support long file names, the extension will be cut off after the third character (e.g. "~Is").

286

Redistribution: Shipping the Application Web Designer Setup

11.4 Web Designer Setup

You can find the List & Label Web Designer Setup in the "Redistribution" directory in your List & Label installation
directory both as a conventional interactive installation program (file extension: .exe) and in a Windows Installer
variant for installation via command line, e.g. for distribution via group policy (file extension: .msi).

11.4.1 Command Line Options for Windows Installer Setup

Note: The following calls must be executed with administrator rights.

Installation with user interface (please note that the interface is only available in English):
msiexec /i "C:\Program Files (x86)\combit\LL31\Redistribution\LL31WebDesignerSetup.msi"

Installation without user interface into the default installation directory "C:\Program Files (x86)\Web Designer 31"
msiexec /i "C:\Program Files (x86)\combit\LL31\Redistribution\LL31WebDesignerSetup.msi" /q

Installation without user interface into an own installation directory, here "C:\Program Files (x86)\Test\Web Designer
31"

msiexec /i "C:\Program Files (x86)\combit\LL31\Redistribution\LL31WebDesignerSetup.msi" /q
INSTALLDIR="C:\Program Files (x86)\Test\Web Designer 31"

For more information about the Windows Installer command line options, see docs.microsoft.com/en-
us/windows/desktop/msi/command-line-options.

11.5 Other Settings

The following data are managed dependent on the main application (i.e. the program name of the task):
e Language

* Dialog design

* Dialog positions

* Designer configurations (colors, fonts)

This means that the configurations set by you or your program regarding language and dialog design or the dialog
positions and the Designer configurations chosen by the user are only valid for your application. In this way, your
application does not need to pay attention to whatever configurations are used in other applications.

These settings are stored in the registry at HKEY CURRENT_USER/Software/combit/CMBTLL/<application
name>.

287

https://docs.microsoft.com/en-us/windows/desktop/msi/command-line-options
https://docs.microsoft.com/en-us/windows/desktop/msi/command-line-options

Update Information New Features

12. Update Information

In this chapter you will find all the important information about updating List & Label.

12.1 New Features

An overview of the new features of List & Label 31 and older versions can be found in the separate PDF document
"Product Development".

12.2 Updating to a Newer Version of List & Label
12.2.1 General

Please make sure to update your personal license key, since the key is version and user specific.
As with any software update, we highly recommend that you check all project and template files after updating.

Improvements can sometimes mean that things are done slightly differently, which might have an unexpected
impact on your projects.

12.2.2 Updating .NET Projects

Usually, it is sufficient to replace the reference to combit.ListLabel30.dll with a reference to combit.ListLabel31.dll.
Namespace references only need to be updated if you use List & Label version 25 or older ("combit.ListLabel25..."
to "combit.Reporting..."). You should additionally remove the old components from the toolbox and replace them
with the new components.

12.2.3 Updating VCL Projects (e.g. Delphi)
See the hints in the Delphi online help.

12.2.4 Updating OCX Projects (e.g. Visual Basic)

Important: Note that ActiveX technology for OCX controls is now considered obsolete. Browsers generally no
longer support the controls for security reasons, and most development environments no longer support
ActiveX controls. We strongly recommend switching to a more up-to-date technology. The OCX controls
cmLL31fx.ocx, cmLL370.0cx/cuLL310.0cx, cmLL31ox.0cx, cmLL31r.ocx, cmLL31v.ocx/cxLL31v.ocx in List &
Label are no longer being developed further and will be removed in one of the upcoming versions. If you have
any questions about this, please feel free to contact us at info@combit.com.

e Load the Visual-Basic project (*.vbp resp. *.mak) in a text editor. Replace the line
Object="{2213E283-16BC-101D-AFD4-040224009C1E}#30.040"; "CMLL300.0CX"
with the following
Object="{2213E283-16BC-101D-AFD4-040224009C1F}#31.040"; "CMLL310.0CX"
and the line
Module= CMLL30; CMLL30.BAS
with the line
Module=CMLL31; CMLL31.BAS

e After saving your changes, load the form (*.frm) in a text editor, which contains the List & Label OCX. Replace
the line

Object="{2213E283-16BC-101D-AFD4-040224009C1E}#30.040"; "CMLL300.0CX"
with the following
Object="{2213E283-16BC-101D-AFD4-040224009C1F}#31.040"; "CMLL310.0CX"

e If you wish to convert older List & Label versions, change the corresponding entries analogously. If you use
the UNICODE OCX control, you need to adapt the control GUID. The new GUID is {2213E283-16BC-101D-
AFD4-040224009DFF}.

e You can now load your projects in Visual Basic. The source code must be significantly adapted according to
the original version.

e From VB b the .BAS declaration file is not necessary, because the List & Label constants are contained in the
OCX control.

288

Update Information Important Changes

Please note that it is not possible to host differently versioned OCXes (e.g. version 30 and 31) within the same
application.

12.2.5 Updating Projects Using the API (e.g. C/C+ +)

Adjust the reference to the declaration file to the current version (e.g. for C/C++ #include "cmbtlI30.h" to
#include "cmbtllI31.h")

Adjust the reference to the corresponding import library analogously (e.g. in C/C++ in the linker settings
cmbtll30.lib to cmbtlI31.lib)

12.3 Important Changes

Note the following changes compared to the respective previous version. If necessary, adjust your projects
according to the descriptions.

Important hint concerning the OCX controls

Note that ActiveX technology for OCX controls is now considered obsolete. Browsers generally no longer
support the controls for security reasons, and most development environments no longer support ActiveX
controls. We strongly recommend switching to a more up-to-date technology. The OCX controls cmLL31fx.ocx,
cmLL310.0cx/cuLL310.0cx, cmLL31ox.0ocx, cmLL31r.ocx, cmLL31v.ocx/cxLL31v.ocx in List & Label are no
longer being developed further and will be removed in one of the upcoming versions. If you have any questions
about this, please feel free to contact us at info@combit.com.

12.3.1 Version 31

General

The Deutsche Post AG Internetmarke is no longer supported.
The PDF rendering engine uses new libraries to display and generate PDF files.

Important note about the PDF rendering engine

If necessary, you can switch back to the old libraries. However, please note that this should only be done if
problems arise with the new libraries. It is essential that you report these problems to us, as the old libraries
will be removed in one of the upcoming versions. Please contact us at info@combit.com.

To do this, create a new DWORD value "PDF.EMF2PDF.Library" for PDF export or "PDF.PDF2EMF.Library" for
the PDF object in the registry under "HKEY CURRENT_ USER/Software/combit/cmbtll/<application name>"
(alternatively under HKEY _LOCAL_MACHINE) and set these to the value "1".

The PDF.ZUGFeRDConformancelLevel and PDF.ZUGFeRDVersion options are no longer supported. The
required information is now always read automatically from the transferred XML file.

.NET

All assemblies are now delivered with a digital signature by default. This means that the "Assemblies Signed"
subfolder and the special "Signed" NuGet packages are no longer available.

The assembly "combit.ReportServer31.ClientApi.dll' now uses the target framework ".NET Standard 2.0"
because the previous target framework ".NET Standard 1.3" is no longer recommended by Microsoft.

.NET 6 is no longer supported (reason: official end of support on November 12, 2024, see Microsoft .NET and
.NET Core Support Policy).

12.3.2 Version 30

General

The default of option LL OPTION _VIRTUALDEVICE SCALINGOPTIONS has been changed from
"LL_OPTION_VIRTUALDEVICE_SCALINGOPTION UNSCALED (0)" to "600".

The default behavior of the option LL OPTION MERGE REPORT PARAMETERS WITH THE SAME NAME
has been set to "true" so that report parameters with the same name from different reports such as includes,
sub-reports etc. are combined into one report parameter and treated in the same way. This means that report
parameters with the same name are no longer displayed more than once.

The use of the EPC barcode via the DOM API had to be adapted.
No more support for Windows 11 version 21H2 due to official end of support from Microsoft.

289

https://dotnet.microsoft.com/en-us/platform/support/policy/dotnet-core
https://dotnet.microsoft.com/en-us/platform/support/policy/dotnet-core

Update Information Important Changes

e When creating the preview file, the value of the export option PDF.ZUGFeRDXmI/Path is no longer embedded

by default. To restore the previous behavior, the new option
LL OPTION_COMPAT ZUGFERDXMLPATH_ PREVIEWEMBEDDING has been introduced.
.NET

e No more support for .NET 7 due to official end of support from Microsoft.

e If you have written your own implementation of /Repository, please make sure that you synchronize the
Folderld and FolderPath information from the Updatedi/tem into your repository in CreateOrUpdateltem. An
example of this would be as follows:
if (ContainsItem(updatedItem.InternallD))

{

item.FolderId = updatedItem.FolderId;
item.FolderPath = updatedItem.FolderPath;

This is necessary to correctly support the dialog for editing the repository. Our sample implementations take
this into account correctly from version 30 onwards.

e Web Report Designer: The following changes have been made to the WebReportDesignerAction enumeration
as part of the restructuring of the interface for managing the element collection. The BrowseProjects entry has
been changed to OpenProjects and controls whether projects other than the default project can be opened.
The ViewFiles entry has been changed to ManageRepository and controls whether the files and projects in the
repository can be managed.

e Web Report Designer: The ExportProject entry in the WebReportDesignerAction enumeration, which has been
marked as deprecated since version 28, has now been removed.

e The DefinePrintOptions event is now called for each project in a combination print sequence.

e RestDataProvider, ODataDataProvider, GraphQLDataProvider: The type of the Headers property changed from
WebHeaderCollection to HttoRequestHeaders.

12.3.3 Version 29

General

e The default setting for the "Export.InfinitePage" option in the JSON, Text (CSV) and Text (Layout) exports has
been changed from "0" to "1", since it is generally undesirable for these to be cut up by possible footer and
header repetitions.

e The default design scheme for charts has been changed from "combit' to "combit Pastel', see also
LL_OPTIONSTR DEFAULTCHARTSCHEME.

.NET
e The .NET Framework 4 now requires at least version 4.8.
e No more support for .NET Core 3.1 due to official end of support from Microsoft.

e MySqglConnectionDataProvider/MariaDBConnectionDataProvider: In previous versions, the views might have
been included even if SupportedElementTypes did exclude them. Now, this is handled properly, leading to
possible breaking changes if your project relied on the views being present. A fix is easy - simply include the
DbConnectionElementTypes.View in the SupportedElementTypes.

e DOM: New monochrome display option for simple bar charts requires the adjustment that the "ColorMode"
property in the supported bar charts (PropertyChartEngineBar2D, PropertyChartEngineBar3DClustered and
PropertyChartEngineBar3DMultiRow) is changed from "string" to "PropertyColorModeChart' and has been
extended by the subproperty "Color". If the setting Monochrome ("0") is set for "Mode", the color can be set
with the subproperty "Color" (default: "LL.Scheme.ChartColorQ").

e The assembly "combit.ListLabel29.SqlConnectionDataProvider.dll' now uses the "Microsoft.Data.SqlClient"
NuGet package (only for .NET 6/8). The reason is that Microsoft implements new features (e.g. encryption)
only in this package and no longer in the previously used "System.Data.SqglClient" package. It may be necessary
to set in the used connection string the parameter "Encrypt" to "false", if the SQL Server does not use a valid
SSL certificate - e.g. for testing purposes. You may need to add the reference to this package in your
application. We strongly recommend that you test all data sources that use this provider for unchanged
functionality.

290

Update Information Important Changes

12.3.4 Version 28

General
e For applications under service accounts and web applications the OLE object is no longer loaded by default.
This can be bypassed by explicitly setting LL_OPTIONSTR_LLXPATHLIST.

e The module "combit.ListLabel.ConversionTools.[x86/x64].dII", which is required for PDF object, certain export
formats (PDF, SVG, XHTML/CSS, MHTML) as well as Web Report Designer/Web Report Viewer, now carries
the List & Label main version in the file name: "combit.ListLabel28.ConversionTools.[x86/x64].dll".

e Since 28.001: Changed default setting for "XLS.AutoFit" option from "1" to "0", as setting it to "1" can significantly
reduce the speed of the export.

.NET

e No more support for .NET 5 due to official end of support from Microsoft.
e The data type "bytel[]" in the data source was always converted to the bitmap format until now. Now an attempt
is made beforehand to recognize the image formats supported in List & Label (e.g. SVG, PNG, JPEG, GIF, TIFF)

and to register them natively. This means a significant increase in performance, can result in a reduced file
size of the preview files and extended image properties such as the transparency of PNGs are preserved.

o Web Report Designer: In the WebReportDesignerAction enumeration, the ExportProject entry has been
marked as deprecated. From now on, use the DownloadProject entry instead.

12.3.5 Version 27

General

e Crosstab: When using the "Minimum Size" property, only a horizontal wrap is now prevented, while a vertical
wrap is ignored.

e Changed anchoring of table lines, set LL_OPTION_IMPROVED TABLELINEANCHORING (236) to "0" to restore
the old behavior.

.NET
e The property "Contents" of the PropertyMatchDevicePixel class was renamed to "Active" and its type was
changed to string in order to enable formulas.

e The type of the property "DotSizeReduction" of the PropertyMatchDevicePixel class was changed to string in
order to enable formulas.

e The HTMLb Viewer has been marked as obsolete. Use the new Web Report Viewer instead. This offers the
same functionality, but is based on the modern WebComponent technology.

12.3.6 Version 26

General

e The export formats HTML and jQuery Mobile (JQM) are no longer supported and are only included for
compatibility reasons. By default, they are no longer displayed in the export dialog. If you still need these
formats, for example, for sending mails (HTML) or for display on a mobile device (jQuery Mobile), you have to
enable them explicitly via LISetOptionString(hJob, LL_ OPTIONSTR_LEGACY_EXPORTERS ALLOWED.,...) or
via LL.Core.LISetOptionString(...).

e The default of the LL_ PRNOPT_JOBPAGES option has been changed from 16 to INT_MAX.

e TheLL PRNOPT PRINTDLG ALLOW NUMBER_OF FIRST PAGE option has been added. This allows you to
set the page number in the print dialog that starts on the first printed page.

e When using the new combination print or multi-pass features, the virtual variable memory (SetVar/GetVar)
within a print job is not reset - the values are therefore retained when the same print job is reused. Therefore,
please do not reuse the print job, but always use a new print job. See also chapter "Hints for Usage in Multiple
Threads (Multithreading)".

.NET

e The .NET Framework 4.0 is no longer supported, instead the .NET Framework 4.7 is the new base framework
for NET 4.x.

e The WebDesigner class names have been changed, a search and replace of WebDesigner —
WindowsClientWebDesigner is required for the conversion.

291

Update Information Important Changes

The namespaces no longer contain a version number. All namespaces whose names would have started with
"combit.ListLabel26" now start with "combit.Reporting". This makes the version changeover much easier in the
future.

The default for SupportedElementTypes for many data providers has been changed from
SupportedElementTypes to SupportedElementTypes.Tables | SupportedE-lementTypes.Views, so that the
Designer now also displays the views by default.

Casing of the parameters in the RegisterRoutes method of the WindowsClient-WebDesignerConfig class
adapted.

DOM collections now no longer use CollectionBase, but Collection<T> as base class.

MySqlDataProvider is now contained in a separate assembly and is no longer part of combit.ListLabel26.dll.

12.3.7 Version 25

General

The use of fields in tables with free content is no longer allowed. The contents of the field in this constellation
were already random, SO the use was prone to errors. The
LL OPTION _COMPAT ALLOW FIELDS IN_STATIC TABLE option can be used to restore the previous
behavior.

Delphi: Version 6 and lower is no longer supported.

Delphi: Native List & Label API functions such as LIDefineVariableExt must be called in the FireDAC VCL
component via the new Core object.

Removed the LL_OPTION_SUPPORT_HUGESTORAGEFS option.
XHTML/CSS Export: The default of option XHTML.ToolbarType has been changed to 4 (Web).

.NET

.NET Framework Client Profile is no longer supported.
.NET Framework 2.0 is no longer supported.
.NET Standard is no longer supported.

WebDesigner: Removed the deprecated WebDesignerOptions.UseCDNType,
WebDesignerOptions.DataTheme and DesignerControl. CDNType properties. Code that uses these properties
can be deleted (the WebDesigner does no longer use jQuery).

Removed the obsolete ListLabelWebViewer and ListLabelMvcWebViewer controls.

DOM: The KeepTogether property of a table no longer is a simple string but rather a class with different sub
properties.

12.3.8 Version 24
.NET

The obsolete properties WebDesignerOptions.UseCDNType, WebDesig-nerOptions.DataTheme and
DesignerControl.CDNType have been removed. Code that uses these properties can be easily deleted because
the Web Designer no longer has any jQuery references.

Removed some obsoleted classes (e.g. ListLabelWebViewer).
The option LL_OPTION_TABSTOPS has been removed.

The option LL_OPTION_IDLEITERATIONCHECK MAX ITERATIONS for setting the maximum number of
attempts to print an object has been added.

12.3.9 Version 23
.NET

Web Designer: Removed the obsoleted properties WebDesignerOptions.DataSourcelDs,
DesignerControl.DataSourcelDs and the event OnRequestDataProvider. The initially provided data source is
stored by List & Label now, so you do not need to create any additional instances anymore after the
WebDesigner control has been rendered. Usually you can simply remove all code related to that
property/event.

292

Update Information Important Changes

Web Designer: Removed the obsoleted properties WebDesignerOptions.Border,
WebDesignerOptions.Height, WebDesignerOptions.Width and WebDesignerOptions.CssClass.

Web Designer: Obsoleted the properties WebDesignerOptions.UseCDNType,
WebDesignerOptions.DataTheme and DesignerControl. CDNType. These properties are ignored in version 23
and will be removed in a later version.

Removed LegacyMongoDbDataProvider (was obsoleted in 22)

DOM: fixed typo in property name 'ZAxis' of the PropertyChartEngineTreeMapClustered class (was 'ZAxes'
before)

The ListLabel object does not dispose the "base" set of [Table objects it retrieves from the data provider
anymore, as this destroys caching scenarios. The IDataProvider implementor is now responsible to Dispose()
any existing ITable instances in its own Dispose() method.

The AdoDataProvider's schema row now contains true "null" values instead of an empty string. This also affects
the behavior of the AutoDefineField/AutoDefineVariable event, as e.Value might be null now.

The AdoDataProvider now checks if fields and variables are used at all in the layout and only passes the used
ones at print time. This might change the behavior of e.g. the AutoDefineField event, as you will only get this
event for used fields. If you need all fields, set the CheckUsedldentifiers property to false.

The option LL_OPTION_POSTPAINT_TABLESEPARATORS is the new default.
The option LL_OPTION_PARTSHARINGFLAGS now defaults to Oxff.

12.3.10 Version 22
.NET

The DesignerControl now disposes the assigned parent ListLabel instance after the page was rendered
(incompabilities are possible if the ListLabel instance is not only used for rendering the DesignerControl).

Project.Save() saves the project synchronously instead of asynchoronously as before to a possibly passed in
stream, whereas Project.Close() will just release the ressources.

DesignerFunctions.Add() now allows to pass IDesignerFunction instead of DesignerFunction.

The deprecated Web Designer browser plugins and the related properties
DesignerControl.PluginCompatibility and WebDesignerOptions.PluginCompatibility have been removed.

The DesignerControl.Close event has been removed. The ListLabel instance passed in
DesignerControl.ParentComponent gets disposed internally now.

The Web Designer does not support Windows XP anymore.

GetProjectType is no longer available as static method of LICore, use the instance specific
LIUtilsGetProjectType method of LICore instead.

12.3.11 Version 21
.NET

The browser-plugin-based DesignerControl was replaced with the browser-independent Web Designer. The
required adjustments can be found in chapter "Web Designer" of the Programmer's Manual.

Changed default for MaximumRecursionDepth of ObjectDataProvider to 3 (before: 10)
Changed default for FlattenStructure of ObjectDataProvider to true (before: false)

The OracleConnectionDataProvider from combit.ListLabel20.DataProviders.Oracle
(combit.ListLabel20.0racleConnectionDataProvider.dll) was integrated into combit.ListLabel21.DataProviders
(combit.ListLabel21.dll) and replaces the old and obsolete OracleConnectionDataProvider that was depending
on the unsupported OracleClient from System.Data.OracleClient. To use the new Oracle DataProvider,
ODP.NET must be installed, the ADO.NET drivers Oracle.ManagedDataAccess.Client (recommended) and
Oracle.DataAccess.Client are supported.

AddTableEventArgs was renamed to DefineTableEventArgs.

293

Update Information Important Changes

12.3.12 Version 20

.NET

e The SqglConnectionDataProvider class has been incorporated into the main assembly, the separate provider
assembly is no longer required nor available.

e LIGetOption now returns IntPtr instead of int. Please use an explicit type cast where necessary.

294

Help and Support Important Changes

13. Help and Support

Many tips and tricks can be found in our knowledgebase at https://forum.combit.net/c/knowledgebase/english.
The knowledgebase will be updated regularly and more articles will be added - so it's worth taking a look!

Information on the support concept can be found at https://www.combit.com/reporting-tool/support/.

Requirements:
Before contacting us, please check the following points or obtain the required information:

e First, read the latest notes in the Service Pack's "What's new" PDF document. You can find it during the Service
Pack installation or in the Service Pack download area at https://support.combit.net/en/list-label-service-packs/.

e Please also note the information in our knowledgebase article Troubleshooting Guidance.

e For written inquiries, use the support form at https://support.combit.net/en/support-center/.

295

https://forum.combit.net/c/knowledgebase/english
https://www.combit.com/reporting-tool/support/
https://support.combit.net/en/list-label-service-packs/
https://forum.combit.net/t/troubleshooting-guidance/5082
https://support.combit.net/en/support-center/

Index

14. Index

.NET

1

1:1 relations

1:n relations

A

Abort box

Access
AdoDataProvider
Alias

API Reference
AutoDefineField
AutoDefineNewLine
AutoDefineNewPage
AutoDefineVariable
AutoDestination
AutoFileAlsoNew
AutoMasterMode
AutoProjectFile
AutoProjectType
AutoShowPrintOptions
AutoShowSelectFile

B

Barcode

Barcode size
Barcode Variables
Boolean Variables

Cc

C/IC++
C++ Builder
Callback
Callbacks
Cards
Charts
Handling
Programming
Code page
Component
Properties
Components
Concepts
Copies
Create log file
Create new project
Cross tables
Crosstabs
CSS

Currency symbol

60, 65, 71
60, 63, 65

145, 150
19

17
179
88

21
21,30
21,30
21

17
17
17,20
17
17,21
17
17

21
171
53
53

"

1"

73

72,75, 82
22

30

81

60

163

17

13

17

22,59, 139, 144, 146
26

17

30

60

240

166, 174

D

Data provider
Data Source
Data transfer
Data type

Barcode

Date

Drawing

HTML

Logic

Numeric

RTF

Text
Data types
Database independent
DataBinding
DataMember
DataProviderCollection
DataSource
DataTable
DataView
DataViewManager
Date Variables
DateTime
DB2
DbCommandSetDataProvider
Debug mode
Debugging
Debwin
Decimal char
Declaration files
Default export format
Default printer
Default project file
Delphi
Design
Designer

Direct printing

Edit

Extend
DesignerFunction
Dialog styles
Digital Signature
DOC export
DOM

Examples

Functions

Units
Drawing Variables
DrawObject
DrawPage
DrawTableField
DrawTablelLine

Drilldown reports

17,65
15
15

21
20
20
21
20
20
20
20
19
30
15
20
18
13,18
17
17
17
52
20
31
18
158

12,25, 93, 168
12,26, 284

174
12
17

120
17
"
15

9

75

22
22,32
32

88

264

231
24
85
83
85
53
21
21
21
21
77

Index

E

E-mail export
Entity Framework
EntityCollection
Error Codes
Events
Examples
Excel export
Expandable Regions
Export

Digital Signature

Excel

Fax

Formats

HTML

JaM

MHTML

PDF

Picture

PowerPoint

Restrict formats

RTF

Send via E-Mail

SVG

Text (CSV)

Text (Layout)

TTY

Without user interaction

Word
XHTML/CSS
XML
XPS
ZIP
Export media
Export options
Extended MAPI

External$

F

Fax export

Faxing

Fields

File Extension

File extensions

File selection dialog

File types

FileExtensions

Filter

FINALIZE event

First page

Font

Footer

Free content

Functions
Script$

G

Group header option

265

18

19

280

21

28

225

80

16, 31, 219
264

225

256

219

257

261

246

222

253

234

31

237

265

255

247
246, 249
256

31

231

240

251
240, 257
270

175

182, 221
266

185

256

176
10,19
286

159

17

16

16

135, 149
79

146
164, 165, 175
137

60, 63

277,278

165

H

Help file
HTML
HTML export

IDbCommand
IEnumerable<T>
IListSource
ILLDataProvider
ApplyFilter
ApplySortOrder
DefineDelayedInfo
DefineRow
Dispose
GetOption
GetRowCount
MoveNext
OpenChildTable
OpenTable
SetOption
SetUsedldentifiers
Import-Libraries
Instantiation
Integration
Interactive Sorting
Invoice
Invoice Merge
Issues
ITypedList

J

Java

Job Handle
Job number
JQM export
JScript

L

Label
Labels
Landscape
Language
Languages
Last page
Licensing
LINQ

List
List<T>
ListLabel
ListLabelDocument

ListLabelPreviewControl

ListLabelRTFControl

Lists

LL BARCODE

LL BARCODE ...
SSCC

LL BOOLEAN

LL CHAR ...
LOCK

120
21,53
257

18
18
18
65
70
70
68
68
69
71
67
68
67
67
71
69
49
14
14
81
20
29
22
18

"
217,280
140

261

275

28
21
22
119
1Nl
146
15
18
28
18
13
14
14
14
21
53

54
53

51

297

Index

NEWLINE
PHANTOMSPACE

LL_CMND ...
DRAW_USEROBJ
EDIT_USEROBJ
ENABLEMENU
EVALUATE

GETVIEWERBUTTONSTATE

HELP
HOSTPRINTER
MODIFYMENU
OBJECT
PAGE
PROJECT
SAVEFILENAME
SELECTMENU
TABLEFIELD
TABLELINE
VARHELPTEXT

LL DATE

LL DATE ...

DELPH
DELPHI 1
MS

OLE
VFOXPRO

LL DESIGNEROPTSTR ...
PROJECTDESCRIPTION
PROJECTFILENAME
WORKSPACETITLE

LL DRAWING

LL DRAWING ...
HBITMAP
HEMETA
HICON
HMETA
USEROBJ
USEROBJ DLG

LL ERR ..
ACCESS_DENIED (-65)
ALREADY_PRINTING (-6)
BAD DLLS (-100)
BAD_EXPRESSION (-19)
BAD_EXPRMODE (-20)
BAD_JOBHANDLE (-1)
BAD MODE (-32)

BAD OBJECTTYPE (-3)
BAD_PRINTER (-15)
BADCODEPAGE (-45)

BADDATABASESTRUCTURE (-5b)

BADOBJNAME (-25)

BUFFERTOOSMALL (-44)
CANNOTCREATETEMPFILE (-46)

CFGBADFILE (-24)
CFGBADMODE (-33)
CFGFOUND (-59)
CFGNOTFOUND (-22)

DRAWINGNOTFOUND (-53)

EXCEPTION (-104)
EXPORTING (-13)
EXPRESSION (-23)

IDLEITERATION_DETECTED (-66)

105,

176,

51
51

183
184
185
185
186
186
172
186
187
188
189
190
190
190
191
192

52

52
52
52
52
52

107
107
107

53

53
53
53
53
54
54

282
280
282
280
280
280
281
280
280
281
282
281
281
281
281
281
282
280
282
282
280
281
282

INVALIDDATE (-52)
INVALIDOPERATION (-57)
LICENSEVIOLATION (-105)
NEEDS_VB (-14)

NO_BOX (-5)
NO_LANG_DLL (-101)
NO_MEMORY (-102)
NO_OBJECT (-29)
NO_PREVIEWFILES (-17)
NO_PREVIEWMODE (-16)
NO_PRINTER (-11)
NO_PROJECT (-10)
NO_TABLEOBJECT (-28)
NO_TEXTOBJECT (-30)
NO_WEBSERVER_LICENSE (-51)
NOCHART (-48)
NODESTINATION (-47)
NOPRINTERCFG (-38)

NOT YET PRINTING (-7)
NOTFINISHED (-43)
NOTINHOSTPRINTERMODE (-42)
NOUSERINTERACTION (-54)
NOVALIDPAGES (-41)
ONLYWITHONETABLE (-34)
PARAMETER (-18)
PRINTING (-12)
PRINTING_JOB (-4)

282
282
282
280
280
282
282
281
280
280
280
280
281
281
282
281
281
281
280
281
281
282
281
281
280
280
280

PROPERTY_ALREADY_DEFINED (-58) 282

SAVECFG (-60)
SAVEPRINTERCFG (-39)
TASK_ACTIVE (-2)

UNKNOWN (-31)
UNKNOWNFIELD (-36)
UNKNOWNOBJECT (-27)
UNKNOWNPROPERTY (-56)
UNKNOWNSORTORDER (-37)
UNKNOWNVARIABLE (-35)
USER_ABORTED (-99)

LL ERR STG ...

ACCESSDENIED (-1008)
BADHANDLE (-1005)

BADJOB (-1007)
BADSTORAGE (-1009)
BADVERSION (-1001)
CANNOTCREATEFILE (-1017)
CANNOTGETMETAFILE (-1010)
DOWNLOAD_FAILED (-1014)
DOWNLOAD_PENDING (-1013)
ENDOFLIST (-1006)
INET_ERROR (-1019)
NOSTORAGE (-1000)
OUTOFMEMORY (-1011)
READ (-1002)

SEND_FAILED (-1012)

SEND_FAILED_NEED_OAUTH2 _TOKEN (-1021)

UNEXPECTED (-1016)
UNKNOWNSYSTEM (-1004)
WRITE (-1003)
WRITE_FAILED (-1015)

LL HTML
LL INFO ...

METER

282
281
280
281
281
281
282
281
281
282

283
283
283
283
283
283
283
283
283
283
283
283
283
283
283

283
283
283
283

53

193

298

Index

PRINTJOBSUPERVISION 194
LL_NTFY ...
COMBINATIONPRINTSTEP 194
DESIGNERPRINTJOB 195
EXPRERROR 195
EXPRERROR_EX 196
FAILSFILTER 196
VIEWERBTNCLICKED 196
VIEWERDRILLDOWN 197
LL_NUMERIC 52
LL_NUMERIC ...
INTEGER 52
LOCALIZED 52
LL_OPTION. ...
ADDVARSTOFIELDS 162
ALLOW_COMBINED COLLECTING _OF DATA FOR COLLECTI
ONCONTROLS 162
ALLOW_LLX_EXPORTERS 162
BITMAP_OUTOFMEMORY_FORCETHROWorrrrrrerneee 162

CALC SUMVARS ON_PARTIAL LINES163
CALCSUMVARSONINVISIBLELINES 163

CALLBACKMASK 163
CALLBACKPARAMETER 163
CODEPAGE 163
COMPAT_PROHIBITFILTERRELATIONS163
COMPAT_ZUGFERDXMLPATH_PREVIEWEMBEDDING......... 163
COMPRESSRTF 163
COMPRESSSTORAGE 163
CONVERTCRLF 163
DEFAULTDECSFORSTR 164
DEFDEFFONT 164, 175
DEFPRINTERINSTALLED 120
DELAYTABLEHEADER 164

DESIGNEREXPORTPARAMETER 164
DESIGNERPREVIEWPARAMETER 164
DESIGNERPRINT_SINGLETHREADED 164

ERR_ON_FILENOTFOUND 164
ESC_CLOSES PREVIEW 164
EXPRSEPREPRESENTATIONCODE 164
FONTPRECISION 165
FONTQUALITY 164
FORCE_DEFAULT PRINTER IN_PREVIEWooooovoeee... 165
FORCEFIRSTGROUPHEADER 165
FORCEFONTCHARSET 165
FORCESAVEDESIGNSCHEME 165
HELPAVAILABLE 120, 165
IDLEITERATIONCHECK_MAX_ITERATIONSoooooooeeee.... 165
IMMEDIATELASTPAGE 165
IMPROVED TABLELINEANCHORING 165
INCLUDEFONTDESCENT 166
INCREMENTAL_PREVIEW 166
INTERCHARSPACING 166
KEEP_EXPORTER_CONTROL FILES IN_MEMORY................ 166
LANGUAGE 119
LCID 166, 174, 178
LOCKNEXTCHARREPRESENTATIONCODEcccccccc...... 166
MAXRTFVERSION 166
METRIC 167
NOAUTOPROPERTYCORRECTION 167
NOFAXVARS 167
NOFILEVERSIONUPGRADEWARNING 167
NOMAILVARS 167
NONOTABLECHECK 167

NOPARAMETERCHECK 49,

NOPRINTERPATHCHECK
NOPRINTJOBSUPERVISION
NOTIFICATIONMESSAGEHWND
NULL_IS_NONDESTRUCTIVE
PARTSHARINGFLAGS
PHANTOMSPACEREPR...CODE
POSTPAINT_TABLESEPARATORS

PREVIEW_SCALES_RELATIVE_TO_PHYSICAL_SIZE

PRINTERDCCACHE TIMEOUT SEC
PRINTERDEVICEOPTIMIZATION
PRINTERLESS
PROHIBIT OLE OBJECTS_IN_RTF
PROHIBIT_USERINTERACTION
PROJECTBACKUP

PRVRECT HEIGHT

PRVRECT LEFT

PRVRECT TOP

PRVRECT WIDTH

PRVZOOM HEIGHT

PRVZOOM LEFT
PRVZOOM_PERC

PRVZOOM TOP

PRVZOOM WIDTH

REALTIME

RESETPROJECTSTATE_FORCES_NEW_DC....
RESETPROJECTSTATE_FORCES_NEW_PRINTJOB

RETREPRESENTATIONCODE
RIBBON_DEFAULT ENABLEDSTATE
RIBBON_FORCEENABLED
RTFHEIGHTSCALINGPERCENTAGE
SCALABLEFONTSONLY
SCALINGOPTIONS
SETCREATIONINFO
SHOWPREDEFVARS
SKETCH_COLORDEPTH
SKIPRETURNATENDOFRTF
SORTVARIABLES
SPACEOPTIMIZATION

SUPERVISOR
SUPPORTS_PRNOPTSTR_EXPORT
SUPPRESS_TOOLTIPHINTS

SVG TO DIB_MAX SIZE

SVG TO DIB_RESOLUTION
TABLE_COLORING
TABREPRESENTATIONCODE

UNITS

USE_JPEG_OR PNG_OPTIMIZATION
USEBARCODESIZES
USECHARTFIELDS
USEHOSTPRINTER

USESIMPLEWINDOWSPENSTYLE_FRAMEDRAWING

USESVG2BMP
VARLISTDISPLAY
VARSCASESENSITIVE
XLATVARNAMES

LL OPTIONSTR ...
CARD_PRJDESCR
CARD PRJDESCR SINGULAR
CARD_PRJEXT
CARD_PRNEXT
CARD_PRVEXT

167
167
168
168
168
168
168
168

168
169
169
169
169
169
169
169
169
169
169
169
169
169
169
169

170
170
170
170
170
173
170
170
170
170
170
171
171
171
171
171
171
171
171
171
172
171
171
172

172
172
173
173

176
176
174
174
174

........... 172

299

Index

CURRENCY

DECIMAL
DEFAULTCHARTSCHEME
DEFAULTSCHEME
DEFDEFFONT
EMBEDDED_EXPORTS
EXPORTEDFILELIST
EXPORTS_ALLOWED

164,

EXPORTS_ALLOWED_IN_PREVIEW

EXPORTS AVAILABLE
FAX
GTC_PRJDESCR
GTC PRJDESCR SINGULAR
HELPFILENAME
IDX_PRJDESCR
IDX_PRJDESCR_SINGULAR
LABEL PRJDESCR
LABEL PRJDESCR SINGULAR
LABEL PRJEXT
LABEL PRNEXT
LABEL PRVEXT
LICENSINGINFO
LIST PRJDESCR
LIST PRJDESCR SINGULAR
LIST PRJEXT
LIST PRNEXT
LIST PRVEXT
LLFILEDESCR
LLXPATHLIST
LOGFILEPATH
MAILTO
MAILTO BCC
MAILTO CC
MAILTO SUBJECT
NULLVALUE
ORIGINALPROJECTFILENAME
PREVIEWFILENAME
PRINTERALIASLIST
PROJECTPASSWORD
REPORTPARAMDLGTITLE
SAVEAS_PATH
SHORTDATEFORMAT
THOUSAND
TIMEZONE_CLIENT
TIMEZONE_DATABASE
TOC PRJDESCR
TOC PRJDESCR SINGULAR
VARALIAS
LL PRINT ...
FILE
NORMAL
PREVIEW
USERSELECT
LL_PRNOPT ...
COPIES
COPIES_SUPPORTED
DEFPRINTERINSTALLED
FIRSTPAGE
JOBID
JOBPAGES
LASTPAGE
OFFSET

162,

174
174
174
174
175
175
176
175
175
175
176
176
176
176
176
176
176
176
176
176
176
176
176
176
177
177
177
177
177
177
177
177
177
177
178
178
178
178
178
178
178
178
178
179
179
176
176
179

56
56
56
56

146
139
140
146
140
146
146
146

PAGE 146
PRINTDLG ALLOW NUMBER OF FIRST PAGE
PRINTDLG_ONLYPRINTERCOPIES 147

PRINTORDER 140

UNIT 140

UNITS 147

USE2PASS 140
LL PRNOPTSTR_...

EXPORT 147

ISSUERANGES 147

PAGERANGES 147

PRINTDST_FILENAME 147

PRINTJOBNAME 147
LL PROJECT ...

CARD 56

LABEL 56

LIST 57
LL QUERY_...

DESIGNERACTIONSTATE 198

EXPR2HOSTEXPRESSION 198
LL RTF 53
LL TEXT 51
LL WRN_...

PRINTFINISHED (-997) 282

REPEAT_DATA (-998) 282

TABLECHANGE (-105) 282
LL WRN_STG_...

UNFAXED PAGES (-1100) 283
LIAssociatePreviewControl 88
LICreateSketch 88
LIDbAddTable 60, 65, 89
LIDbAddTableEx 89
LIDbAddTableRelation 60, 65, 90
LIDbAddTableRelationEx 91
LIDbAddTableSortOrder 60, 65, 91
LIDbAddTableSortOrderEx 92
LIDbSetMasterTable 93
LIDebugOutput 93
LIDefineChartFieldExt 94
LIDefineChartFieldStart 111,142
LIDefineField 56, 94
LIDefineFieldExt 95
LIDefineFieldExtHandle 96, 111
LIDefineFieldStart 97,111,112, 143
LIDefinelLayout 55, 73, 97, 168, 281
LIDefineSumVariable 98
LIDefineVariable 56, 99
LIDefineVariableExt 99
LIDefineVariableExtHandle 100, 111
LIDefineVariableStart 101, 111, 112
LIDesignerAddAction 101
LIDesignerFileOpen 102
LIDesignerFileSave 103
LIDesignerGetOptionString 104
LIDesignerinvokeAction 104
LIDesignerProhibitAction 55, 104
LIDesignerProhibitEditingObject 105
LIDesignerProhibitFunction 106
LIDesignerRefreshWorkspace 106
LIDesignerSetOptionString 104, 107
LIDIgEditLineEx 107
LIDomCreateSubobject 83, 108

300

Index

LIDomDeleteSubobject
LIDomGetObject
LIDomGetProject
LIDomGetProperty
LIDomGetSubobject
LIDomGetSubobjectCount
LIDomSetProperty
LIEnum...

GetEntry

GetFirstChartField

GetFirstField

GetFirstVar

GetNextEntry
LIExportOption
LIExprError
LIExprEvaluate 113,
LIExprFree
LIExprGetUsedVars
LIExprGetUsedVarsEx
LIExprParse
LIExprType
LIGetChartFieldContents
LIGetDefaultPrinter
LIGetDefaultProjectParameter
LIGetErrortext
LIGetFieldContents
LIGetFieldType
LIGetLastErrorText
LIGetNotificationMessage
LIGetOption
LIGetOptionString
LIGetPrinterFromPrinterFile
LIGetProjectParameter
LIGetSumVariableContents
LIGetUsedldentifiers 97,
LIGetUsedldentifiersEx
LIGetUserVariableContents
LIGetVariableContents
LIGetVariableType
LIGetVersion
LIJobClose
LIJobOpen 51,54, 119,
LIJobOpenLCID 51, 54,
LIJobStateRestore
LIJobStateSave
LILocAddDesignLCID
LILocAddDictionaryEntry
LIPreviewDeleteFiles
LIPreviewDisplay
LIPreviewDisplayEx
LIPreviewSetTempPath
LIPrint
LIPrint[WithBox]Start
LIPrintAbort
LIPrintCopyPrinterConfiguration
LIPrintDbGetCurrentRelation
LIPrintDbGetCurrentTable
LIPrintDbGetCurrentTableFilter
LIPrintDbGetCurrentTableRelation
LIPrintDbGetCurrentTableSortOrder
LIPrintDbGetRootTableCount
LIPrintDeclareChartRow

84,
83,

84,
83,

83,
84,

113,
178,

117,

118,

74,

120,

122,

123,

125,
125,
119,

129,

130,
97,

61,

63,

108
108
109
109
109
110
110

110
11
111
112
112

16
196
280
114
114
114
115
116
116
116
271
117
118
123
118
119
119
177
120

271

122
142
123
123
124
124
124
126
162
126
126
127
127
127
129
280
129
130
149
101
131
131

63
132
133
133
134
132
134

LIPrintDidMatchFilter 135
LIPrintEnableObject 135, 281
LIPrintEnd 136, 176
LIPrinterSetup 136
LIPrintFields 137,149, 164
LIPrintFieldsEnd 137
LIPrintGetChartObjectCount 138
LIPrintGetCurrentPage 138
LIPrintGetFilterExpression 138
LIPrintGetltemsPerPage 139
LIPrintGetOption 138, 139
LIPrintGetOptionString 140
LIPrintGetPrinterInfo 141
LIPrintGetProjectParameter 141, 271
LIPrintGetTextCharsPrinted 281
LIPrintlsChartFieldUsed 142
LIPrintlsFieldUsed 97,142, 281
LIPrintlsVariableUsed 101, 143, 281
LIPrintOptionsDialog 136, 143, 145
LIPrintOptionsDialogTitle 144
LIPrintResetProjectState 144
LIPrintSelectOffsetEx 145
LIPrintSetBoxText 145, 149, 280
LIPrintSetOption 146
LIPrintSetOptionString 147
LIPrintSetProjectParameter 148, 271
LIPrintStart 148, 281
LIPrintUpdateBox 149
LIPrintVariableStart 143
LIPrintWillMatchFilter 149
LIPrintWithBoxStart 150
LIProjectClose 151
LIProjectOpen 151
LIProjectSave 152
LIRTFCopyToClipboard 153
LIRTFCreateObject 153
LIRTFDeleteObject 153
LIRTFDisplay 154
LIRTFEditObject 155
LIRTFEditorinvokeAction 155
LIRTFEditorProhibitAction 155
LIRTFGetText 156
LIRTFGetTextLength 156
LIRTFSetText 157
LISelectFileDIgTitleEx 58, 1567
LISetDebug 49, 168
LISetDefaultProjectParameter 1569, 271
LISetFileExtensions 159
LISetNotificationCallback 73,160
LISetNotificationCallbackExt 161
LISetNotificationMessage 74,161
LISetOption 56, 58, 119, 120, 162, 280, 281
LISetOptionString 58, 120, 160, 173
LISetPrinterDefaultsDir 179
LISetPrinterInPrinterFile 180
LISetPrinterToDefault 181
LLStaticTable 60, 63
LIStgsys...
Append 201, 214
Convert 201
DeleteFiles 202
DestroyMetafile 202, 207

301

Index

DrawPage
GetAPIVersion
GetFilename
GetFileVersion
GetJobCount
GetJobOptionStringEx
GetJobOptionValue
GetlastError
GetPageCount
GetPageMetafile
GetPageOptionString
GetPageOptionValue
GetPagePrinter
Print
SetJob
SetJobOptionStringEx
SetPageOptionString
SetUlLanguage
StorageClose
StorageConvert
StorageOpen
StoragePrint

LIViewerProhibitAction

LIXGetParameter

LIXSetParameter

LoadFinished

Localization

Lock functions

Lock menu items

Lock objects

Locked objects

LS OPTION ...
BOXTYPE
COPIES
CREATION
CREATIONAPP
CREATIONDLL
CREATIONUSER
ISSUEINDEX
JOBNAME
PAGENUMBER
PHYSPAGE
PRINTERALIASLIST
PRINTERCOUNT
PRN_INDEX
PRN_ORIENTATION
PRN_PIXELS X
PRN_PIXELS Y
PRN_PIXELSOFFSET_X
PRN_PIXELSOFFSET Y
PRN_PIXELSPERINCH_X
PRN_PIXELSPERINCH Y
PRN_PIXELSPHYSICAL X
PRN_PIXELSPHYSICAL Y
PROJECTNAME
UNITS
USED_PRTDEVICE
USER

LsMailConfigurationDialog

LsMailGetOptionString

LsMaildJobClose

LsMailJobOpen

206,

207,

208, 212,

215,

203
203
204
204
205
205
205
206
206
207
208
208
210
210
21
212
214
213
213
213
213
214
181
182
182

45
179

22

22

22
171

206
209
208
208
208
208
209
208
209
209
208
206
209
209
209
209
209
209
209
209
209
209
208
206
208
208
266
216
216
216

LsMailSendFile
LsMailSetOptionString
LsSetDebug

M

MAPI
Menu

Menu items

MenulD.txt46, 47, 104, 105, 155, 156, 181, 186, 187, 190, 197

Messages

Meter dialog
MHTML export
Multi Mime HTML
Multiple print
Multiple tables
Multiple tables
Multithreading
MySQL

N

NuGet
NULL-values
Numerical Variables

0)

Object model
ObjectDataProvider
ObjectReportContainer
Objects
Barcode
HTML
Picture
RTF-Text
Text
ObjectText
OCX component
data transfer
Designer functions
Designer objects
Events
Integration
Language selection
Preview control
Preview files
print-and-design methods
OCX Event
‘BtnPress’
‘LoadFinished’
'PageChanged’
OCX Method
'‘GetOptionString’
‘Gotolast’
‘GotoNext’
‘GotoPrev’
‘PrintAllPages’
‘PrintCurrentPage’
‘PrintPage’
‘RefreshToolbar’
‘SaveAs’
‘SendTo’

60

23,

217
217
218

266

117,181

104

73
145
246
246

20
135
, 65
274

31

14
271
52

24
18
25
25
24
24
23
24
23
25

42
43
44
42
41
42
42
43
41

47
47
47

46
46
46
46
46
46
46
46
46
46

302

Index

‘SetOptionString’
'SetZoom'
‘ZoomReset’
'ZoomRevert’
'ZoomTimes2'

OCX Properties
"AsyncDownload’
‘BackColor’
‘CanClose’
‘CurrentPage’
‘Enabled’
‘FileURL’
‘Pages’
‘SaveAsFilePath’
‘ShowThumbnails’
‘ToolbarButtons’
‘ToolbarEnabled’
'Version'

OCX Viewer Control

OleDbConnectionDataProvider

Oracle
OracleConnection

OracleConnectionDataProvider

P

Page break
Page number
Parameter
Pass additional data
PDF export
P-file
Picture
Picture export
Placeholders
Portrait
PostgreSQL
PowerPoint Export
PPTX export
Preview
Preview API
Preview files
Convert
Join
PreviewFile
Print
Network
Print Engine
Print files
Print options
Print options dialog
Printer configuration
Printer device

Printer selection window

Printer settings
Printers
Printing

Job
Proceeding
Progress
ProhibitedActions
ProhibitedFunctions

Project files

47
46
46
46
46

45
45
46
45
45
45
45
a6
46
45
45
46
45
19
3"

19
19

59, 131
146

49, 280
21

222

16

20

253

29

22

31

234

234
10,32, 129
200

200

32

32

32

16

33

10

200
144, 146
17

131, 286
148

136

16

22

50, 51
56
12
22
22

In database
Project includes
Project parameters
Project type
Project types

Cards

Labels

Lists
ProjectCard
ProjectLabel
ProjectList
Property ‘Pages’

R

ReadOnlyObjects
Real data preview
Regions

Report Container
Report Parameter
Return Value
Rounding

RTF

RTF control

RTF Editor, calling
RTF export

S

Scripting

Sending e-Mail
Settings

SMTP

Space Optimization
Speed Optimization
SqglConnection

SqglConnectionDataProvider

SQLite

START-Event

Sub reports
SubltemTable

Sum variable
Suppress data

SVG export

System requirements

T

Text (CSV) export
Text (Layout) export
Text blocks

Text Variables
Thousands separator
Threading

Translate$
Translation

TTY

U

Unbound data
Update
User Drawn Object

User information

33
29
271
17

22
21
21
25
25
25
47

22

129
22,25
24, 60, 65
80

50

271

53

163, 166
153

237

277,278
32

287

266

171

59

19

19

31

78

29, 60, 65
25

98, 122, 163, 271
30

255

8, 285

247

246, 249
19

51

178

274

128

179

256

30
288
54
170

303

Index

User variable

\'

VariableHelpText

Variables

VBScript

VCL

VCL component
Data binding
Data transfer
Designer objects
Events
Language selection
Preview control
Preview files
Print-and-design methods
Relational links

VDF

Viewer Application

Viewer OCX Control

Visual Basic

Visual C++

Visual DataFlex

Visual dBase

123

21
10,19
275
1"

35
37
40
38
37
38
38
36
35
12
285
45
"
"
12
12

Visual FoxPro

Visual Studio

VLC component
Integration

w

Web Reporting
Windows Scripting Host
Word export

X

Xbase+ +
XHTML export
XLS export
XMAPI

XML

XML export
XmlDataProvider
XPS export

z

ZIP export
Zoom factor

12
13

34

274
275
231

12

240

225

266

19

251

19

240, 257

270
169

304

	Contents
	1. Introduction
	1.1 Before Installation
	1.1.1 System Requirements
	1.1.2 Licensing

	1.2 After Installation
	1.2.1 Start Menu
	1.2.2 Designer Quick Start via Sample Application
	1.2.3 Programming Samples
	1.2.4 Documentation

	1.3 Important Concepts
	1.3.1 Basic Principles
	Creating Report Templates in the Designer
	Print or Export: Generating Reports
	Displaying Reports

	1.3.2 Project Types
	Labels and File Cards
	Lists

	1.3.3 Variables and Fields
	1.3.4 Available User Interface Languages

	1.4 Getting Started With Programming
	1.4.1 Overview
	1.4.2 Integration With .NET
	1.4.3 Integration With Delphi
	1.4.4 Integration With C++ Builder
	1.4.5 Integration With C/C++
	1.4.6 Integration With Visual Basic
	1.4.7 Integration With Java
	1.4.8 Integration With Other Programming Languages
	1.4.9 Hints on Table, Variable and Field Names
	1.4.10 Debugging Support

	2. Programming With .NET
	2.1 Introduction
	2.1.1 Integration in Visual Studio
	2.1.2 Components

	2.2 First Steps
	2.2.1 Integrate List & Label
	2.2.2 License Component
	2.2.3 Binding to a Data Source
	2.2.4 Design
	2.2.5 Print
	2.2.6 Export
	2.2.7 Important Properties of the Component

	2.3 Other Important Concepts
	2.3.1 Data Providers
	AdoDataProvider
	DataProviderCollection
	DataSource
	DbCommandSetDataProvider
	ObjectDataProvider
	OleDbConnectionDataProvider
	OracleConnectionDataProvider
	SqlConnectionDataProvider
	XmlDataProvider

	2.3.2 Variables, Fields and Data Types
	Variables and Fields With Databinding
	Data Types

	2.3.3 Events
	2.3.4 Project Types
	Lists
	Labels
	Cards

	2.3.5 Varying Printers and Printing Copies
	Regions
	Issues and Copies

	2.3.6 Edit and Extend the Designer
	Menu Items, Objects and Functions
	Extend Designer

	2.3.7 Objects in the Designer
	Text
	Picture
	Barcode
	RTF Text
	HTML

	2.3.8 Report Container
	2.3.9 Object Model (DOM)
	2.3.10 List & Label in WPF Applications
	2.3.11 Error Handling With Exceptions
	2.3.12 Debugging
	Create Log File
	Custom Logging Mechanisms & Logs in Web Applications

	2.3.13 Repository Mode for Distributed (Web) Applications
	Basic Principles
	Implementation
	Tips

	2.4 Usage in Web Applications
	2.5 Examples
	2.5.1 Simple Label
	2.5.2 Simple List
	2.5.3 Invoice Merge
	2.5.4 Print Card With Simple Placeholders
	2.5.5 Sub Reports
	2.5.6 Charts
	2.5.7 Cross Tables
	2.5.8 Database Independent Contents
	Pass Additional Contents
	Suppress Data From a Data Source
	Custom Data Structures / Contents

	2.5.9 Export
	Export Without User Interaction
	Restriction of Export Formats

	2.5.10 Extend Designer by Custom Function
	2.5.11 Join and Convert Preview Files
	2.5.12 Sending E-Mail
	2.5.13 Store Project Files in a Database
	2.5.14 Network Printing

	3. Programming With the VCL Component
	3.1 Integration of the Component
	3.1.1 FireDAC Component
	Assignment of the Data Source
	Calling the Design or Print Method

	3.1.2 BDE Component

	3.2 Data Binding
	3.2.1 Binding List & Label to a Data Source
	3.2.2 Working With Master Detail Records
	3.2.3 Additional Options for Data Binding

	3.3 Simple Print and Design Methods
	3.3.1 Working Principle
	3.3.2 Using the UserData Parameter

	3.4 Transferring Unbound Variables and Fields
	3.4.1 Pictures
	3.4.2 Barcodes

	3.5 Language Selection
	3.6 Working With Events
	3.7 Displaying a Preview File
	3.8 Working With Preview Files
	3.8.1 Opening a Preview File
	3.8.2 Merging Multiple Preview Files
	3.8.3 Debugging

	3.9 Extending the Designer
	3.9.1 Using the Formula Wizard to Add Your Own Functions
	3.9.2 Adding Your Own Objects to the Designer

	4. Programming With the OCX Component
	4.1 Integration of the Component
	4.2 Simple Print and Design Methods
	4.2.1 Working Principle
	4.2.2 Using the UserData Parameter

	4.3 Transferring Unbound Variables and Fields
	4.3.1 Pictures
	4.3.2 Barcodes

	4.4 Language Selection
	4.5 Working With Events
	4.6 Displaying a Preview File
	4.7 Working With Preview Files
	4.7.1 Opening a Preview File
	4.7.2 Merging Multiple Preview Files
	4.7.3 Debugging

	4.8 Extending the Designer
	4.8.1 Using the Formula Wizard to Add Your Own Functions
	4.8.2 Adding Your Own Objects to the Designer

	4.9 The Viewer OCX Control
	4.9.1 Overview
	4.9.2 Registration
	4.9.3 Properties
	4.9.4 Methods
	4.9.5 Events
	BtnPress
	PageChanged
	LoadFinished

	4.9.6 Visual C++ Hint
	4.9.7 CAB Files Packaging
	4.9.8 Inserting the OCX Into Your Internet Page

	5. Programming Using the API
	5.1 Programming Interface
	5.1.1 Dynamic Link Libraries
	Basics
	Usage of a DLL
	Linking With Import Libraries
	Important Remarks on the Function Parameters of DLLs

	5.1.2 General Notes About the Return Value

	5.2 Programming Basics
	5.2.1 Database Independent Concept
	5.2.2 The List & Label Job
	5.2.3 Variables, Fields and Data Types
	Text
	Numeric
	Date
	Boolean
	RTF Formatted Text
	HTML Formatted Text
	Drawing
	Barcode
	User Object

	5.3 Invoking the Designer
	5.3.1 Basic Scheme
	5.3.2 Annotations

	5.4 The Print Process
	5.4.1 Supplying Data
	5.4.2 Real Data Preview or Print?
	5.4.3 Basic Procedure
	Printing Labels and File Cards
	Printing Lists

	5.4.4 Annotations
	Starting Print: Reading the Project File
	List Projects: Important Things to Note
	Copies
	Speed Optimization

	5.5 Printing Relational Data
	5.5.1 Using a Custom Print Loop
	API Functions Needed
	Calling the Designer
	Controlling the Print Engine
	Multiple Independent Tables on the Same Level
	Simple 1:n Relations
	The Recursive Print Loop
	Supplying Master Data as Variables

	5.5.2 Using the ILLDataProvider Interface
	Advantages
	Prerequisites
	Calling the Designer
	Controlling the printing process
	Required API functions and interface
	OpenTable (ILLDataProvider)
	OpenChildTable (ILLDataProvider)
	GetRowCount (ILLDataProvider)
	DefineDelayedInfo (ILLDataProvider)
	MoveNext (ILLDataProvider)
	DefineRow (ILLDataProvider)
	Dispose (ILLDataProvider)
	SetUsedIdentifiers (ILLDataProvider)
	ApplySortOrder (ILLDataProvider)
	ApplyFilter (ILLDataProvider)
	SetOption (ILLDataProvider)
	GetOption (ILLDataProvider)

	5.5.3 Handling 1:1 Relations
	1:1 Relations Without a Key Field Definition
	1:1 Relation With Key Field Definition
	Performance Hints

	5.6 Callbacks and Notifications
	5.6.1 Overview
	5.6.2 User Objects
	5.6.3 Definition of a Callback Routine
	5.6.4 Passing Data to the Callback Routine
	5.6.5 Passing Data by Messages
	5.6.6 Further Hints

	5.7 Advanced Programming
	5.7.1 Direct Print and Export From the Designer
	Introduction
	Preparation
	Tasks
	Start Event (..._PREVIEW_START/..._EXPORT_START)
	Abort Event (..._PREVIEW_ABORT/..._EXPORT_ABORT)
	Finalize Event (..._PREVIEW_FINALIZE/..._EXPORT_FINALIZE)
	Status Query Event (..._PREVIEW_QUEST_JOBSTATE/..._EXPORT_ QUEST_JOBSTATE)

	Activity

	5.7.2 Drilldown Reports in Preview
	Preparations
	Tasks
	5.7.2.1.1 Start Event (LL_DRILLDOWN_START)
	5.7.2.1.2 Finalize Event (LL_DRILLDOWN_FINALIZE)
	5.7.2.1.3 Preparing the Data Source

	5.7.3 Supporting the Report Parameter Pane in Preview
	Preparations

	5.7.4 Supporting Expandable Regions in Preview
	Preparations

	5.7.5 Supporting Interactive Sorting in Preview
	Preparations

	5.7.6 Handling Chart and Crosstab Objects
	Standard Mode (Default)
	Enhanced Mode

	5.8 Using the DOM-API (Professional/Enterprise Edition Only)
	5.8.1 Basic Principles
	DOM Functions
	LlDomGetObject
	LlDomGetSubobjectCount
	LlDomGetSubobject
	LlDomCreateSubobject
	LlDomDeleteSubobject
	LlDomSetProperty
	LlDomGetProperty

	Units

	5.8.2 Examples
	Creating a Text Object
	Creating a Table
	Setting the Project Parameters

	6. API Reference
	6.1 Function Reference
	LlAssociatePreviewControl
	LlCreateSketch
	LlDbAddTable
	LlDbAddTableEx
	LlDbAddTableRelation
	LlDbAddTableRelationEx
	LlDbAddTableSortOrder
	LlDbAddTableSortOrderEx
	LlDbSetMasterTable
	LlDebugOutput
	LlDefineChartFieldExt
	LlDefineField
	LlDefineFieldExt
	LlDefineFieldExtHandle
	LlDefineFieldStart
	LlDefineLayout
	LlDefineSumVariable
	LlDefineVariable
	LlDefineVariableExt
	LlDefineVariableExtHandle
	LlDefineVariableStart
	LlDesignerAddAction
	LlDesignerFileOpen
	LlDesignerFileSave
	LlDesignerGetOptionString
	LlDesignerInvokeAction
	LlDesignerProhibitAction
	LlDesignerProhibitEditingObject
	LlDesignerProhibitFunction
	LlDesignerRefreshWorkspace
	LlDesignerSetOptionString
	LlDlgEditLineEx
	LlDomCreateSubobject
	LlDomDeleteSubobject
	LlDomGetObject
	LlDomGetProject
	LlDomGetProperty
	LlDomGetSubobject
	LlDomGetSubobjectCount
	LlDomSetProperty
	LlEnumGetEntry
	LlEnumGetFirstChartField
	LlEnumGetFirstField
	LlEnumGetFirstVar
	LlEnumGetNextEntry
	LlExprError
	LlExprEvaluate
	LlExprFree
	LlExprGetUsedVars
	LlExprGetUsedVarsEx
	LlExprParse
	LlExprType
	LlGetChartFieldContents
	LlGetDefaultPrinter
	LlGetDefaultProjectParameter
	LlGetErrortext
	LlGetFieldContents
	LlGetFieldType
	LlGetLastErrorText
	LlGetNotificationMessage
	LlGetOption
	LlGetOptionString
	LlGetPrinterFromPrinterFile
	LlGetProjectParameter
	LlGetSumVariableContents
	LlGetUsedIdentifiers
	LlGetUsedIdentifiersEx
	LlGetUserVariableContents
	LlGetVariableContents
	LlGetVariableType
	LlGetVersion
	LlJobClose
	LlJobOpen
	LlJobOpenLCID
	LlJobStateRestore
	LlJobStateSave
	LlLocAddDesignLCID
	LlLocAddDictionaryEntry
	LlPreviewDeleteFiles
	LlPreviewDisplay
	LlPreviewDisplayEx
	LlPreviewSetTempPath
	LlPrint
	LlPrintAbort
	LlPrintCopyPrinterConfiguration
	LlPrintDbGetRootTableCount
	LlPrintDbGetCurrentTable
	LlPrintDbGetCurrentTableFilter
	LlPrintDbGetCurrentTableRelation
	LlPrintDbGetCurrentTableSortOrder
	LlPrintDeclareChartRow
	LlPrintDidMatchFilter
	LlPrintEnableObject
	LlPrintEnd
	LlPrinterSetup
	LlPrintFields
	LlPrintFieldsEnd
	LlPrintGetChartObjectCount
	LlPrintGetCurrentPage
	LlPrintGetFilterExpression
	LlPrintGetItemsPerPage
	LlPrintGetOption
	LlPrintGetOptionString
	LlPrintGetPrinterInfo
	LlPrintGetProjectParameter
	LlPrintIsChartFieldUsed
	LlPrintIsFieldUsed
	LlPrintIsVariableUsed
	LlPrintOptionsDialog
	LlPrintOptionsDialogTitle
	LlPrintResetProjectState
	LlPrintSelectOffsetEx
	LlPrintSetBoxText
	LlPrintSetOption
	LlPrintSetOptionString
	LlPrintSetProjectParameter
	LlPrintStart
	LlPrintUpdateBox
	LlPrintWillMatchFilter
	LlPrintWithBoxStart
	LlProjectClose
	LlProjectOpen
	LlProjectSave
	LlRTFCopyToClipboard
	LlRTFCreateObject
	LlRTFDeleteObject
	LlRTFDisplay
	LlRTFEditObject
	LlRTFEditorInvokeAction
	LlRTFEditorProhibitAction
	LlRTFGetText
	LlRTFGetTextLength
	LlRTFSetText
	LlSelectFileDlgTitleEx
	LlSetDebug
	LlSetDefaultProjectParameter
	LlSetFileExtensions
	LlSetNotificationCallback
	LlSetNotificationCallbackExt
	LlSetNotificationMessage
	LlSetOption
	LlSetOptionString
	LlSetPrinterDefaultsDir
	LlSetPrinterInPrinterFile
	LlSetPrinterToDefault
	LlViewerProhibitAction
	LlXGetParameter
	LlXSetParameter

	6.2 Callback Reference
	LL_CMND_DRAW_USEROBJ
	LL_CMND_EDIT_USEROBJ
	LL_CMND_ENABLEMENU
	LL_CMND_EVALUATE
	LL_CMND_GETVIEWERBUTTONSTATE
	LL_CMND_HELP
	LL_CMND_MODIFYMENU
	LL_CMND_OBJECT
	LL_CMND_PAGE
	LL_CMND_PROJECT
	LL_CMND_SAVEFILENAME
	LL_CMND_SELECTMENU
	LL_CMND_TABLEFIELD
	LL_CMND_TABLELINE
	LL_CMND_VARHELPTEXT
	LL_INFO_METER
	LL_INFO_PRINTJOBSUPERVISION
	LL_NTFY_COMBINATIONPRINTSTEP
	LL_NTFY_DESIGNERPRINTJOB
	LL_NTFY_EXPRERROR
	LL_NTFY_EXPRERROR_EX
	LL_NTFY_FAILSFILTER
	LL_NTFY_VIEWERBTNCLICKED
	LL_NTFY_VIEWERDRILLDOWN
	LL_QUERY_DESIGNERACTIONSTATE
	LL_QUERY_EXPR2HOSTEXPRESSION

	6.3 Managing Preview Files
	6.3.1 Overview
	6.3.2 The Preview API
	LlStgsysAppend
	LlStgsysConvert
	LlStgsysDeleteFiles
	LlStgsysDestroyMetafile
	LlStgsysDrawPage
	LlStgsysGetAPIVersion
	LlStgsysGetFilename
	LlStgsysGetFileVersion
	LlStgsysGetJobCount
	LlStgsysGetJobOptionStringEx
	LlStgsysGetJobOptionValue
	LlStgsysGetLastError
	LlStgsysGetPageCount
	LlStgsysGetPageMetafile
	LlStgsysGetPageOptionString
	LlStgsysGetPageOptionValue
	LlStgsysGetPagePrinter
	LlStgsysPrint
	LlStgsysSetJob
	LlStgsysSetJobOptionStringEx
	LlStgsysSetPageOptionString
	LlStgsysSetUILanguage
	LlStgsysStorageClose
	LlStgsysStorageConvert
	LlStgsysStorageOpen
	LlStgsysStoragePrint
	LsMailConfigurationDialog
	LsMailGetOptionString
	LsMailJobClose
	LsMailJobOpen
	LsMailSendFile
	LsMailSetOptionString
	LsSetDebug

	7. The Export Modules
	7.1 Programming Interface
	7.1.1 Global (De)activation of the Export Modules
	7.1.2 Switching Specific Export Modules On/Off
	7.1.3 Selecting/Querying the Output Format
	7.1.4 Setting Export-specific Options
	7.1.5 Export Without User Interaction
	7.1.6 Querying the Export Results

	7.2 Programming Reference
	7.2.1 PDF Export
	Overview
	Limitations
	Programming Interface

	7.2.2 Excel Export
	Overview
	Limitations
	Programming Interface

	7.2.3 Word Export
	Overview
	Limitations
	Programming Interface

	7.2.4 PowerPoint Export
	Overview
	Limitations
	Programming Interface

	7.2.5 RTF Export
	Overview
	Limitations
	Programming Interface

	7.2.6 XPS Export
	Overview
	Limitations
	Programming Interface

	7.2.7 XHTML/CSS Export
	Overview
	Limitations
	Programming Interface
	Hyperlinks

	7.2.8 MHTML Export
	Overview
	Limitations
	Programming Interface

	7.2.9 JSON Export
	Overview
	Limitations
	Programming Interface

	7.2.10 Text (CSV) Export
	Overview
	Limitations
	Programming Interface

	7.2.11 Text (Layout) Export
	Overview
	Limitations
	Programming Interface

	7.2.12 XML Export
	Overview
	Limitations
	Programming Interface

	7.2.13 Picture Export
	Overview
	Limitations
	Programming Interface

	7.2.14 SVG Export
	Overview
	Limitations
	Programming Interface

	7.2.15 TTY Export
	Overview
	Limitations
	Programming Interface

	7.2.16 Windows Fax Export
	7.2.17 Unsupported Export Formats
	HTML Export
	Overview
	Limitations
	Programming Interface
	Hyperlinks

	JQM Export
	Overview
	Limitations
	Programming Interface

	7.3 Digitally Sign Export Results
	7.3.1 Start Signature
	7.3.2 Programming Interface

	7.4 Send Export Results via E-Mail
	7.4.1 Overview
	7.4.2 Setting Mail Parameters by Code
	7.4.3 Sending Mail via 64 Bit Application
	7.4.4 Hints for Selecting the MAPI Server

	7.5 Export Files as ZIP Compressed Archive

	8. Miscellaneous Programming Topics
	8.1 Passing NULL Values
	8.2 Rounding
	8.3 Optimizing Speed
	8.4 Project Parameters
	8.4.1 Parameter Types
	8.4.2 Querying Parameter Values While Printing
	8.4.3 Predefined Project Parameters
	8.4.4 Automatic Storage of Form Data

	8.5 Web Reporting
	8.6 Hints for Usage in Multiple Threads (Multithreading)
	8.7 Scripting Support
	8.7.1 Introduction
	Which Script Languages are Supported?
	How and Where can Scripts be Integrated?
	Support for Scripting Functionalities

	8.7.2 Preprocessor and Options
	Enable Scripting Support
	General for all Languages
	Selection of the Script Language
	Nesting of Scripts

	Special for use With C#
	Requirements
	Logging
	Debug Mode
	Adding References
	Adding Namespaces

	8.7.3 Quick Reference and Examples
	General Object Model
	Report Object
	WScript Object

	9. Error Codes and Warnings
	9.1 General Error Codes
	9.2 General Warnings
	9.3 Additional Error Codes of the Storage API
	9.4 Additional Warnings of the Storage API

	10. Debug Tool Debwin
	11. Redistribution: Shipping the Application
	11.1 System Requirements
	11.2 The Standalone Viewer Application
	11.2.1 Overview
	11.2.2 Command Line Parameters
	11.2.3 Registration
	11.2.4 Necessary Files

	11.3 List & Label Files
	11.4 Web Designer Setup
	11.4.1 Command Line Options for Windows Installer Setup

	11.5 Other Settings

	12. Update Information
	12.1 New Features
	12.2 Updating to a Newer Version of List & Label
	12.2.1 General
	12.2.2 Updating .NET Projects
	12.2.3 Updating VCL Projects (e.g. Delphi)
	12.2.4 Updating OCX Projects (e.g. Visual Basic)
	12.2.5 Updating Projects Using the API (e.g. C/C++)

	12.3 Important Changes
	12.3.1 Version 31
	General
	.NET

	12.3.2 Version 30
	General
	.NET

	12.3.3 Version 29
	General
	.NET

	12.3.4 Version 28
	General
	.NET

	12.3.5 Version 27
	General
	.NET

	12.3.6 Version 26
	General
	.NET

	12.3.7 Version 25
	General
	.NET

	12.3.8 Version 24
	.NET

	12.3.9 Version 23
	.NET

	12.3.10 Version 22
	.NET

	12.3.11 Version 21
	.NET

	12.3.12 Version 20
	.NET

	13. Help and Support
	14. Index

